scholarly journals On the Most Extended Modal Operator of First Type over Interval-Valued Intuitionistic Fuzzy Sets

Mathematics ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 123 ◽  
Author(s):  
Krassimir Atanassov

The definition of the most extended modal operator of first type over interval-valued intuitionistic fuzzy sets is given, and some of its basic properties are studied.

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Juan-juan Peng ◽  
Jian-qiang Wang ◽  
Jing Wang ◽  
Xiao-hong Chen

The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs). Then, some operations on HIVIFSs are introduced in detail, and their properties are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based ont-conorms andt-norms are proposed, which can be used to aggregate decision-makers' information in multicriteria decision-making (MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einsteint-conorms andt-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and a comparison analysis.


2021 ◽  
pp. 1-13
Author(s):  
Xi Li ◽  
Chunfeng Suo ◽  
Yongming Li

An essential topic of interval-valued intuitionistic fuzzy sets(IVIFSs) is distance measures. In this paper, we introduce a new kind of distance measures on IVIFSs. The novelty of our method lies in that we consider the width of intervals so that the uncertainty of outputs is strongly associated with the uncertainty of inputs. In addition, better than the distance measures given by predecessors, we define a new quaternary function on IVIFSs to construct the above-mentioned distance measures, which called interval-valued intuitionistic fuzzy dissimilarity function. Two specific methods for building the quaternary functions are proposed. Moreover, we also analyzed the degradation of the distance measures in this paper, and show that our measures can perfectly cover the measures on a simpler set. Finally, we provide illustrative examples in pattern recognition and medical diagnosis problems to confirm the effectiveness and advantages of the proposed distance measures.


Author(s):  
VicenÇ Torra ◽  
Yasuo Narukawa ◽  
Ronald R. Yager

The literature discusses several extensions of fuzzy sets. AIFS, IVFS, HFS, type-2 fuzzy sets are some of them. Interval valued fuzzy sets is one of the extensions where the membership is not a single value but an interval. Atanassov Intuitionistic fuzzy sets, for short AIFS, are defined in terms of two values for each element: membership and non-membership. In this paper we discuss AIFS and their relationship with fuzzy measures. The discussion permits us to define counter AIFS (cIFS) and discretionary AIFS (dIFS). They are extensions of fuzzy sets that are based on fuzzy measures.


2020 ◽  
Vol 26 (3) ◽  
pp. 1-12
Author(s):  
Martin Kalina ◽  

Paving is a method for constructing new operations from a given one. Kalina and Kral in 2015 showed that on the real unit interval this method can be used to construct associative, commutative and monotone operations from particular given operations (from basic ‘paving stones’). In the present paper we modify the construction method for interval-valued fuzzy sets. From given (possibly representable) t-norms and t-conorms we construct new, non-representable operations. In the last section, we modify the presented construction method for interval-valued intuitionistic fuzzy sets.


Sign in / Sign up

Export Citation Format

Share Document