scholarly journals The Sine Modified Lindley Distribution

2021 ◽  
Vol 26 (4) ◽  
pp. 81
Author(s):  
Lishamol Tomy ◽  
Veena G ◽  
Christophe Chesneau

The paper contributes majorly in the development of a flexible trigonometric extension of the well-known modified Lindley distribution. More precisely, we use features from the sine generalized family of distributions to create an original one-parameter survival distribution, called the sine modified Lindley distribution. As the main motivational fact, it provides an attractive alternative to the Lindley and modified Lindley distributions; it may be better able to model lifetime phenomena presenting data of leptokurtic nature. In the first part of the paper, we introduce it conceptually and discuss its key characteristics, such as functional, reliability, and moment analysis. Then, an applied study is conducted. The usefulness, applicability, and agility of the sine modified Lindley distribution are illustrated through a detailed study using simulation. Two real data sets from the engineering and climate sectors are analyzed. As a result, the sine modified Lindley model is proven to have a superior match to important models, such as the Lindley, modified Lindley, sine exponential, and sine Lindley models, based on goodness-of-fit criteria of importance.

Author(s):  
Ibrahim Sule ◽  
Sani Ibrahim Doguwa ◽  
Audu Isah ◽  
Haruna Muhammad Jibril

Background: In the last few years, statisticians have introduced new generated families of univariate distributions. These new generators are obtained by adding one or more extra shape parameters to the underlying distribution to get more flexibility in fitting data in different areas such as medical sciences, economics, finance and environmental sciences. The addition of parameter(s) has been proven useful in exploring tail properties and also for improving the goodness-of-fit of the family of distributions under study. Methods: A new three-parameter family of distributions was introduced by using the idea of T-X methodology. Some statistical properties of the new family were derived and studied. Results: A new Topp Leone Kumaraswamy-G family of distributions was introduced. Two special sub-models, that is, the Topp Leone Kumaraswamy exponential distribution and Topp Leone Kumaraswamy log-logistic distribution were investigated. Two real data sets were used to assess the flexibility of the sub-models. Conclusion: The results suggest that the two sub-models performed better than their competitors.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Russell Cheng

Parametric bootstrapping (BS) provides an attractive alternative, both theoretically and numerically, to asymptotic theory for estimating sampling distributions. This chapter summarizes its use not only for calculating confidence intervals for estimated parameters and functions of parameters, but also to obtain log-likelihood-based confidence regions from which confidence bands for cumulative distribution and regression functions can be obtained. All such BS calculations are very easy to implement. Details are also given for calculating critical values of EDF statistics used in goodness-of-fit (GoF) tests, such as the Anderson-Darling A2 statistic whose null distribution is otherwise difficult to obtain, as it varies with different null hypotheses. A simple proof is given showing that the parametric BS is probabilistically exact for location-scale models. A formal regression lack-of-fit test employing parametric BS is given that can be used even when the regression data has no replications. Two real data examples are given.


Econometrics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Šárka Hudecová ◽  
Marie Hušková ◽  
Simos G. Meintanis

This article considers goodness-of-fit tests for bivariate INAR and bivariate Poisson autoregression models. The test statistics are based on an L2-type distance between two estimators of the probability generating function of the observations: one being entirely nonparametric and the second one being semiparametric computed under the corresponding null hypothesis. The asymptotic distribution of the proposed tests statistics both under the null hypotheses as well as under alternatives is derived and consistency is proved. The case of testing bivariate generalized Poisson autoregression and extension of the methods to dimension higher than two are also discussed. The finite-sample performance of a parametric bootstrap version of the tests is illustrated via a series of Monte Carlo experiments. The article concludes with applications on real data sets and discussion.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1114
Author(s):  
Guillermo Martínez-Flórez ◽  
Roger Tovar-Falón ◽  
María Martínez-Guerra

This paper introduces a new family of distributions for modelling censored multimodal data. The model extends the widely known tobit model by introducing two parameters that control the shape and the asymmetry of the distribution. Basic properties of this new family of distributions are studied in detail and a model for censored positive data is also studied. The problem of estimating parameters is addressed by considering the maximum likelihood method. The score functions and the elements of the observed information matrix are given. Finally, three applications to real data sets are reported to illustrate the developed methodology.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1226
Author(s):  
Inmaculada Barranco-Chamorro ◽  
Yuri A. Iriarte ◽  
Yolanda M. Gómez ◽  
Juan M. Astorga ◽  
Héctor W. Gómez

Specifying a proper statistical model to represent asymmetric lifetime data with high kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic representation, probability density function, hazard rate function, moments and estimation of parameters via maximum likelihood methods. As merits of our proposal, we highlight as particular cases a plethora of lifetime models, such as Rayleigh, Maxwell, half-normal and chi-square, among others, which are able to accommodate heavy tails. A simulation study and applications to real data sets are included to illustrate the use of our results.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 603
Author(s):  
Abdulhakim A. Al-Babtain ◽  
Abdul Hadi N. Ahmed ◽  
Ahmed Z. Afify

In this paper, we propose and study a new probability mass function by creating a natural discrete analog to the continuous Lindley distribution as a mixture of geometric and negative binomial distributions. The new distribution has many interesting properties that make it superior to many other discrete distributions, particularly in analyzing over-dispersed count data. Several statistical properties of the introduced distribution have been established including moments and moment generating function, residual moments, characterization, entropy, estimation of the parameter by the maximum likelihood method. A bias reduction method is applied to the derived estimator; its existence and uniqueness are discussed. Applications of the goodness of fit of the proposed distribution have been examined and compared with other discrete distributions using three real data sets from biological sciences.


2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.


Author(s):  
Josimar Vasconcelos ◽  
Renato Cintra ◽  
Abraão Nascimento

In recent years various probability models have been proposed for describing lifetime data. Increasing model flexibility is often sought as a means to better describe asymmetric and heavy tail distributions. Such extensions were pioneered by the beta-G family. However, efficient goodness-of-fit (GoF) measures for the beta-G distributions are sought. In this paper, we combine probability weighted moments (PWMs) and the Mellin transform (MT) in order to furnish new qualitative and quantitative GoF tools for model selection within the beta-G class. We derive PWMs for the Fr\’{e}chet and Kumaraswamy distributions; and we provide expressions for the MT, and for the log-cumulants (LC) of the beta-Weibull, beta-Fr\’{e}chet, beta-Kumaraswamy, and beta-log-logistic distributions. Subsequently, we construct LC diagrams and, based on the Hotelling’s $T^2$ statistic, we derive confidence ellipses for the LCs. Finally, the proposed GoF measures are applied on five real data sets in order to demonstrate their applicability.


Sign in / Sign up

Export Citation Format

Share Document