scholarly journals Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 860
Author(s):  
Zvonimir Boban ◽  
Ivan Mardešić ◽  
Witold Karol Subczynski ◽  
Marija Raguz

Since its inception more than thirty years ago, electroformation has become the most commonly used method for growing giant unilamellar vesicles (GUVs). Although the method seems quite straightforward at first, researchers must consider the interplay of a large number of parameters, different lipid compositions, and internal solutions in order to avoid artifactual results or reproducibility problems. These issues motivated us to write a short review of the most recent methodological developments and possible pitfalls. Additionally, since traditional manual analysis can lead to biased results, we have included a discussion on methods for automatic analysis of GUVs. Finally, we discuss possible improvements in the preparation of GUVs containing high cholesterol contents in order to avoid the formation of artifactual cholesterol crystals. We intend this review to be a reference for those trying to decide what parameters to use as well as an overview providing insight into problems not yet addressed or solved.

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 634
Author(s):  
Ylenia Miele ◽  
Gábor Holló ◽  
István Lagzi ◽  
Federico Rossi

The budding and division of artificial cells engineered from vesicles and droplets have gained much attention in the past few decades due to an increased interest in designing stimuli-responsive synthetic systems. Proper control of the division process is one of the main challenges in the field of synthetic biology and, especially in the context of the origin of life studies, it would be helpful to look for the simplest chemical and physical processes likely at play in prebiotic conditions. Here we show that pH-sensitive giant unilamellar vesicles composed of mixed phospholipid/fatty acid membranes undergo a budding process, internally fuelled by the urea–urease enzymatic reaction, only for a given range of the membrane composition. A gentle interplay between the effects of the membrane composition on the elasticity and the preferred area difference of the bilayer is responsible for the existence of a narrow range of membrane composition yielding a high probability for budding of the vesicles.


Langmuir ◽  
2021 ◽  
Vol 37 (3) ◽  
pp. 1082-1088
Author(s):  
Chiho Kataoka-Hamai ◽  
Kohsaku Kawakami

Soft Matter ◽  
2021 ◽  
Author(s):  
Peng Bao ◽  
Daniel A. Paterson ◽  
Sally A. Peyman ◽  
J. Cliff Jones ◽  
Jonathan A. T. Sandoe ◽  
...  

We describe a modified microfluidic method for making Giant Unilamellar Vesicles (GUVs) via water/octanol-lipid/water double emulsion droplets and encapsulation of nematic lyotropic liquid crystals (LNLCs).


2014 ◽  
Vol 644-650 ◽  
pp. 2952-2956
Author(s):  
Jian Guo Jiang ◽  
Xin Jian Ma ◽  
Xin Liang Qiu ◽  
Min Yu ◽  
Chao Liu

Automatic analysis of malware is a hot topic in recent years. While many methods were proposed it was still a challenge for automatic identification of malware. For example, scoring was commonly used to indicate threat scale of samples, but this metric was given by manual processing in most case. In this paper, a method to automatically generate the score of analyzed sample was proposed. Combine this method and practical problem, we tested up to 639 samples and got a correctness of 97.3%. Experimental result showed that this method could correctly indicate the threat scale of samples. The results of this paper can also offer some tips for manual analysis.


2021 ◽  
Vol 120 (3) ◽  
pp. 147a
Author(s):  
Thais A. Enoki ◽  
Haden L. Scott ◽  
Gerald W. Feigenson ◽  
Frederick A. Heberle

Author(s):  
L F Campanile ◽  
R Jähne ◽  
A Hasse

Classical beam models do not account for partial restraint of anticlastic bending and are therefore inherently inaccurate. This article proposes a modification of the exact Bernoulli–Euler equation which allows for an exact prediction of the beam's deflection without the need of two-dimensional finite element calculations. This approach offers a substantial reduction in the computational effort, especially when coupled with a fast-solving schema like the circle-arc method. Besides the description of the new method and its validation, this article offers an insight into the somewhat disregarded topic of anticlastic bending by a short review of the published theories and a selection of representative numerical results.


Sign in / Sign up

Export Citation Format

Share Document