scholarly journals Application of Commercial Surface Pretreatments on the Formation of Cerium Conversion Coating (CeCC) over High-Strength Aluminum Alloys 2024-T3 and 7075-T6

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 930
Author(s):  
Juan Jesús Alba-Galvín ◽  
Leandro González-Rovira ◽  
Francisco Javier Botana ◽  
Maria Lekka ◽  
Francesco Andreatta ◽  
...  

The selection of appropriate surface pretreatments is one of the pending issues for the industrial application of cerium-based chemical conversion coatings (CeCC) as an alternative for toxic chromate conversion coating (CrCC). A two-step surface pretreatment based on commercial products has been successfully used here to obtain CeCC on AA2024-T3 and AA7075-T6. Specimens processed for 1 to 15 min in solutions containing CeCl3 and H2O2 have been studied by scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), glow discharge optical emission spectroscopy (GDOES), potentiodynamic linear polarization (LP), electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. SEM-EDX showed that CeCC was firstly observed as deposits, followed by a general coverage of the surface with the formation of cracks where the coating was getting thicker. GDOES confirmed an increase of the CeCC thickness as the deposition proceed, the formation of CeCC over 7075 being faster than over 2024. There was a Ce-rich layer in both alloys and an aluminum oxide/hydroxide layer on 7075 between the upper Ce-rich layer and the aluminum matrix. According to LP and EIS, CeCC in all samples offered cathodic protection and comparable degradation in chloride-containing media. Finally, the NSS test corroborated the anti-corrosion properties of the CeCC obtained after the commercial pretreatments employed.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


2016 ◽  
Vol 63 (2) ◽  
pp. 82-88 ◽  
Author(s):  
Shengsong Ge ◽  
Menglong Li ◽  
Qian Shao ◽  
Ke Liu ◽  
Junxiang Wang ◽  
...  

Purpose – This paper aims to clarify the effect of metal ions added in the γ-glycidoxypropyltrimethoxysilane (γ-GPS) solutions on the anti-corrosion properties of the γ-GPS coatings on cold-rolled iron (CRI). Design/methodology/approach – The transformations of functional groups involved in reactions during the coating process were characterized by Fourier transformed infrared spectroscopy (FTIR), and the thickness of the γ-GPS coatings on the CRI substrates was measured using high-powered microscopy. The anti-corrosion properties of γ-GPS-treated samples were evaluated by neutral salt spray tests, polarization curves and electrochemical impedance spectroscopy measurements. Findings – The results show that Zn2+ and Mg2+ in the γ-GPS solutions promote the formation of Si-O-Si and Si-O-Fe bonds and improve the anti-corrosion properties of the γ-GPS coatings on CRI. However, Al3+ and Na+ in the γ-GPS solutions do not play this role. Originality/value – Although there have been previous research studies on the γ-GPS coatings on CRI, this paper is the first to study the effect of metal ions added in the silane solutions on the anti-corrosion properties of the γ-GPS coatings, and it has been confirmed that the anti-corrosion properties changed when Zn2+ (or Mg2+) is present.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1357 ◽  
Author(s):  
Jaromír Wasserbauer ◽  
Martin Buchtík ◽  
Jakub Tkacz ◽  
Stanislava Fintová ◽  
Jozef Minda ◽  
...  

The corrosion behavior of duplex Ni-P coatings deposited on AZ91 magnesium alloy was studied. The electroless deposition process of duplex Ni-P coating consisted in the preparation of low-phosphorus Ni-P coating (5.7 wt.% of P), which served as a bond coating and high-phosphorus Ni-P coating (11.5 wt.% of P) deposited on it. The duplex Ni-P coatings with the thickness of 25, 50, 75 and 100 µm were deposited on AZ91 magnesium alloy. The electrochemical corrosion behavior of coated AZ91 magnesium alloy was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization method in 0.1 M NaCl. Obtained results showed a significant improvement in the corrosion resistance of coated specimens when compared to uncoated AZ91 magnesium alloy. From the results of the immersion tests in 3.5 wt.% NaCl, 10% solution of HCl and NaOH and 5% neutral salt spray, a noticeable increase in the corrosion resistance with the increasing thickness of the Ni-P coating was observed.


2014 ◽  
Vol 525 ◽  
pp. 31-34
Author(s):  
Xiao Feng Liu

By way of chemical marinate method, carrying out rare earth lanthanum to corrosion protect galvanized steel. The process of rare earth lanthanum conversion coating for galvanized steel was studied by using orthogonal experiment to get the optimized passivation parameters when the concentration of La (NO3) is 30g/L, H2O2is 20ml/L, pH=4 and was passivated at 40°C for 30s. The corrosion resistance was examined by weight loss tests, neutral salt spray tests (NSS) and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion impedance of the pretreated sample was significantly improved, the corrosion rate was decreased by one order of magnitude, and the anti-white rust time was 54h.


2012 ◽  
Vol 193-194 ◽  
pp. 458-461
Author(s):  
Hui Ping Bai ◽  
Zhong Hua Zheng ◽  
Yuan Qiang Tu ◽  
Jie Cai

The corrosion behavior of common pressed prepainted steel sheets with trade mark TDC51D+Z was studied by neutral salt spray and electrochemical impedance spectroscopy (EIS). The effect of organic polymers on the corrosion performance of prepainted steel sheet was analyzed with glow discharge optical emission spectrometry (GDS). The results showed that the distributing depth of titanium pigment determined the corrosion performance of prepainted steel sheets with white finishing coat.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
N. Kumar ◽  
A. Jyothirmayi ◽  
R. Subasri

A hybrid sol synthesized from an acid-catalyzed hydrolysis and condensation reaction of 3-glycidoxypropyltrimethoxysilane (GPTMS) and zirconium n-propoxide was used as a matrix nanocomposite sol. To this sol, 0.01 M Ce3+ was added as an inhibitor to provide a self-healing coating system. The effect of an atmospheric air plasma surface pretreatment of aluminum alloy substrates prior to coating deposition of Ce3+-doped/undoped GPTMS-ZrO2 sol was studied with respect to corrosion protection. Coatings were generated by a dip coating technique employing a withdrawal speed of 5 mm/s and thermally cured at 130° C for 1 h. The coated Al surfaces were characterized using potentiodynamic polarization studies and electrochemical impedance spectroscopy. They were also subjected to accelerated corrosion testing using neutral salt spray test with 5% NaCl solution after creating an artificial scratch for more than 200 hours to assess the self-healing ability of coatings. It was observed that cerium (III) doping was effective for corrosion protection during long-term exposure to the electrolyte solution, and a plasma surface pretreatment of substrates prior to coating deposition of Ce3+-doped coatings improved the adhesion of coatings that provides enhanced corrosion protection along with self-healing ability exhibited in case of damages/scratches caused in the coating.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1603
Author(s):  
Meng-Jey Youh ◽  
Yu-Ren Huang ◽  
Cheng-Hsiung Peng ◽  
Ming-Hsien Lin ◽  
Ting-Yu Chen ◽  
...  

Corrosion prevention and infrared (IR) stealth are conflicting goals. While graphene nanosheets (GN) provide an excellent physical barrier against corrosive agent diffusion, thus lowering the permeability of anti-corrosion coatings, they have the side-effect of decreasing IR stealth. In this work, the anti-corrosion properties of 100-μm-thick composite epoxy coatings with various concentrations (0.01–1 wt.%) of GN fillers thermally reduced at different temperatures (300 °C, 700 °C, 1100 °C) are first compared. The performance was characterized by potentiodynamic polarization scanning, electrochemical impedance spectroscopy, water contact angle and salt spray tests. The corrosion resistance for coatings was found to be optimum at a very low filler concentration (0.05 wt.%). The corrosion current density was 4.57 × 10−11 A/cm2 for GN reduced at 1100 °C, showing no degradation after 500 h of salt-spray testing: a significant improvement over the anti-corrosion behavior of epoxy coatings. Further, to suppress the high IR thermal signature of GN and epoxy, Al was added to the optimized composite at different concentrations. The increased IR emissivity due to GN was not only eliminated but was in fact reduced relative to the pure epoxy. These optimized coatings of Al-GN-epoxy not only exhibited greatly reduced IR emissivity but also showed no sign of corrosion after 500 h of salt spray test.


2021 ◽  
Vol 875 ◽  
pp. 60-69
Author(s):  
Syed Abbas Raza ◽  
Muhammad Imran Khan ◽  
Mairaj Ahmad ◽  
Danish Tahir ◽  
Asim Iltaf ◽  
...  

Titanium-Nickel pre-alloyed powder was reinforced with Nano-Silica in 2%, 4% , 6% and 8 wt. % due to effectiveness of Nanoscale ceramic Reinforcement in improving the properties of Metals and Alloys. The compositions of the Pre-Alloyed powders and Nano Silica Approximately 50 nm in diameter and spherical in shape were weighed and mixed in Planetary Ball Mill followed by compaction at 50 MPa using a Uniaxial Compaction machine The green pellets obtained were sintered in Argon Environment for 5 hrs and allowed to furnace cool. The pellets were then sectioned through their cross-section for slices 3 mm thick followed by Cold-mounting and Soldering followed by cold mounting additionally. The Samples were analyzed via X-Ray Diffraction (XRD) for phase distribution as a function of variation in nano-Silica reinforcements and Microstructural analysis was performed via Optical Microscope. The effect of Volume percentage on the densification was determined via Archimedes principle and Micro-Vickers hardness was used for mechanical Evaluation. The Electrochemical Properties were evaluated using Potentio-Dynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in neutral salt solution (3.5% NaCl). The results indicated increasing dissolution of the TiNi phase into intermetallic Titanium-rich and Ni-rich phases in the matrix and hardening due to the Nano-Silica effect of Grain Boundary impingement and phase dissolution of Equiatomic phase and mixed behavior in Corrosion properties as determined by the electrochemical techniques whereas densification decreased due to poor plasticity of Nano-Silica and hinderance in diffusion during the sintering process.


Author(s):  
Stephan V. Kozhukharov ◽  
Christian Girginov

<p class="PaperAbstract"><span lang="EN-US">The possibility for combination between Anodized Aluminum Oxide (AAO) and Cerium Oxide Primer Layer (CeOPL) for elaboration of efficient protective coatings for AA2024-T3 aircraft alloy is proposed in the present research. The combined AAO/CeOPL coating characterizations include Electrochemical Impedance Spectroscopy (EIS) combined with Linear Voltammetry (LVA), for extended times (until 2520 hours) to a model corrosive medium (3.5% NaCl). Topographical and cross-sectional (SEM and EDX) observations were performed in order to determine the AAO/CeOPL film thickness and composition. The AAO/CeOPL layer durability tests were confirmed by standard Neutral Salt Spray (NSS). The data analysis from all the used measurement methods has undoubtedly shown that the presence of AAO film significantly improves the cerium oxide primer layer (CeOPL) protective properties and performance. </span></p>


2019 ◽  
Vol 66 (5) ◽  
pp. 595-602
Author(s):  
Zhifeng Lin ◽  
Likun Xu ◽  
Xiangbo Li ◽  
Li Wang ◽  
Weimin Guo ◽  
...  

Purpose The purpose of this paper is to examine the performance of a fastener composite coating system, sherardized (SD) coating/zinc-aluminum (ZA) coating whether it has good performance in marine environment. Design/methodology/approach In this paper, SD coating was fabricated on fastener surface by solid-diffusion method. ZA coating was fabricated by thermal sintering method. Corrosion behaviours of the composite coating were investigated with potentiodynamic polarization curves, open circuit potential and electrochemical impedance spectroscopy methods. Findings Neutral salt spray (NSS) and deep sea exposure tests revealed that the composite coating had excellent corrosion resistance. Polarization curve tests showed that corrosion current density of the sample with composite coating was significantly decreased, indicating an effective corrosion protection of the composite coating. OCP measurement of the sample in NaCl solution demonstrated that the composite coating had the best cathodic protection effect. The good corrosion resistance of the composite coating was obtained by the synergy of SD and ZA coating. Practical implications SD/ZA coating can be used in marine environment to prolong the life of carbon steel fastener. Social implications SD/ZA composite coating can reduce the risk and accident caused by failed fastener, avoid huge economic losses. Originality/value A new kind of composite coating was explored to protect the carbon steel fastener in marine environment. And the composite coating has the long-term anti-corrosion performance both in simulated and marine environment test.


Sign in / Sign up

Export Citation Format

Share Document