scholarly journals Effect of MgO Content on Heat Capacity of Synthetic BF Slag and Heat Release Behavior during Cooling Process

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1294
Author(s):  
Yanhua Yang ◽  
Ting Lei ◽  
Yuelin Qin

The differential scanning calorimetry (DSC) sapphire analysis was used to measure the specific heat capacity of the BF (BF) slag and observe the CaO-SiO2-MgO-Al2O3-TiO2 5-element slag system with the binary basicity fixed at 1.17. The specific heat capacity of the BF slag and the cooling heat distribution were obtained during the cooling process when the MgO content changing from 7% to 11%. The results showed that the heat released of BF slag was more than 1.2 GJ/ton during the cooling process from 1400 °C to 35 °C, of which the sensible heat was dominant. At MgO content of 9%, the latent heat of crystallization is maximum. The cooling and heat release law of BF slag is directly associated with the phase precipitated in slag cooling and micromorphology.

Author(s):  
Harry O’Hanley ◽  
Jacopo Buongiorno ◽  
Thomas McKrell ◽  
Lin-wen Hu

Nanofluids are being considered for heat transfer applications. However, their thermo-physical properties are poorly known. Here we focus on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid’s specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry, the specific heat capacities of water based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5wt% and 50wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviate very significantly from the data.


2019 ◽  
Vol 4 (3) ◽  
pp. 19-23
Author(s):  
Irina V. Agafonkina ◽  
Igor A. Korolev ◽  
Taras A. Sarantsev

In the temperature range from 45 °C to 90 °C the process of thermal denaturation of a whole complex of muscle proteins in meat takes place. An effective mode to register the thermal denaturation process is the method of differential scanning calorimetry (DSC). As a result of studies the differences during the process of thermal denaturation of muscle proteins of pork, beef, chicken and turkey were defined by the appearance of endothermic peaks in DSC thermograms. The main variances are associated with the process of denaturation of myosin and sacroplasmic proteins and indicate indirectly their quantitative ratio in meat. The values of effective specific heat capacity in the temperature range from 20 °C to 90 °C are obtained as well as those of heat spent on the denaturation process.At reheating, the values of specific heat capacity increased by 0.1 J/(g*K) on the average, and peaks of thermal denaturation were not detected, that certifies the irreversibility of the denaturation process and the decrease in the bound moisture proportion in meat after thermal processing. Knowledge of the nature of protein thermal denaturation of each kind of meat product is one of the necessary tools for developing the technology of meat product thermal processing.


Sign in / Sign up

Export Citation Format

Share Document