scholarly journals Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Erding Wen ◽  
Renbo Song ◽  
Wenming Xiong

The microstructure and wear behavior of a 500 Brinell hardness (HB) grade wear-resistant steel tempered at different temperatures were investigated in this study. The tempering microstructures and wear surface morphologies were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The relationship between mechanical properties and wear resistance was analyzed. The microstructure of the steel mainly consisted of tempered martensite and ferrite. Tempered troosite was obtained when the tempering temperature was over 280 °C. The hardness decreased constantly with the increase of tempering temperature. The same hardness was obtained when tempered at 260 °C and 300 °C, due to the interaction of Fe3C carbides and dislocations. The impact toughness increased first and reached a peak value when tempered at 260 °C. As the tempering temperature was over 260 °C, carbide precipitation would occur along the grain boundaries, which led to temper embrittlement. The best wear resistance was obtained when tempered at 200 °C. At the initiation of the wear test, surface hardness was considered to be the dominant influencing factor on wear resistance. The effect of surface hardness improvement on wear resistance was far greater than the impact toughness. With the wear time extending, the crushed quartz sand particles and the cut-down burs would be new abrasive particles which would cause further wear. Otherwise, the increasing contact temperature would soften the matrix and the adhesive wear turned out to be the dominant wear mechanism, which would result in severe wear.

2014 ◽  
Vol 703 ◽  
pp. 381-384
Author(s):  
Xin Long Chen

The square elbows used in oil and gas fields were often failed because of serious erosion. Some of the products even burst. In this paper, the failure mechanism of square elbow was investigated by using electron microscopy (OM), electron microscopy (SEM) methods. The research results show that the elbow products failed due to its low impact toughness after carburizing and quenching. The erosion angle is nearly ninety-degree. By increasing the tempering temperature, reducing the surface hardness and improving toughness, the serious erosion phenomenon can be effectively avoided. There are two main reasons of the elbow products burst. One reason is the high inclusion content of the material. The other is the low impact toughness. Raising the quality specification of materials can appropriate increase the low impact toughness after heat treatment. It is pointed out that the product would be more safety by improve its impact toughness.


2013 ◽  
Vol 791-793 ◽  
pp. 440-443
Author(s):  
Hong Bo Li ◽  
Jing Wang ◽  
Han Chi Cheng ◽  
Chun Jie Li ◽  
Xing Jun Su

This paper mainly studied the high temperature quenching oil quenching, tempering temperature on the influence of high strength steel mechanical properties of wear resistant. The results show that high strength and toughness wear-resistant cast steel with 880°C× 30min after oil quenching, the hardness of 38.6HRC steel, the impact toughness value reaches 40.18J/cm2. After 200°C, 400°C and 600°C tempering, with the increase of the tempering temperature, the hardness decreased linearly, as by 600°C tempering, the hardness has been reduced to 22.3HRC. Impact toughness with the tempering temperature, the overall upward trend, the impact toughness of some reduced at 400°C, the highest impact toughness value reaches 113.34J/cm2. From the fracture morphology can be seen, with the increase of tempering temperature, ductile fracture increased, by 600°C tempering is dimple fracture, obviously can not see the traces of brittle fracture.


2021 ◽  
Vol 11 (21) ◽  
pp. 10236
Author(s):  
Lingfeng Xu ◽  
Zhanhua Song ◽  
Mingxiang Li ◽  
Fade Li ◽  
Jing Guo ◽  
...  

The working environment of agricultural cutting tools is poor, and the operational quality and efficiency are reduced after they become blunt. This study aimed to develop a high wear-resistant agriculture knife with a long life. A Ni–WC alloy, wear-resistant layer was prepared using laser cladding technology on one side of the cutting edge of a 65 Mn silage knife. A self-grinding edge was formed when the cladded knife was used, which improved the cutting quality and service life of the knife. The microstructure, phase, composition, and hardness distribution of the cladding layer were detected and analyzed. The impact toughness and wear resistance of the laser-cladded samples were analyzed, and the cladded knife was tested in the field. The results show that a cladded layer with a dense microstructure formed metallurgical bonds with the substrate. The microhardness was uniform across the cladded layer, and the average hardness of the micro Vickers was approximately 1000 HV(0.2), which was approximately three times the hardness of the substrate. The impact toughness and wear resistance of the coated knife were obviously higher than those of uncoated knives. The field tests showed that compared with a conventional 65 Mn knife, the self-grinding knife with laser cladding could maintain its sharp cutting shape after operation for 76 h, which greatly extended the service life of the knife. This study improved the service life of an agricultural cutting tool, which enhanced the cutting performance and efficiency at the same time.


Alloy Digest ◽  
2012 ◽  
Vol 61 (1) ◽  

Abstract Dillidur 500V is a water hardened wear-resistant steel with surface hardness at room temperature of 470-530 HB. It has the highest wear resistance of the Dillidur steels. It is used in the production of transport systems, earth-moving plants, recycling plants, and stone crushers. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on wear resistance and surface qualities as well as forming, heat treating, machining, and joining. Filing Code: SA-641. Producer or source: Dillinger Hütte GTS.


2011 ◽  
Vol 199-200 ◽  
pp. 167-172
Author(s):  
Jia Wang ◽  
Qing Zhong He ◽  
Yong Hu ◽  
Ming Chao Wang

The new low alloy martensitic wear resistant steel 25Si2MnNi3 and steel 53Si2MnNi3 are developed, which hardness are about HB450 and HB600 respectively, the impact abrasive wear resistance of new low alloy steel relative to high manganese steel ZGMn13 is investigated on MLD-10 type impact abrasive wear tester under the different impact energy, and the wear mechanism is analyzed. As a result, the new low alloy martensitic steel which impact toughness is well always obtains better impact abrasive wear resistance than that of steel ZGMn13 under different impact energy, and the primary wear mechanism gradually changes from micro-ploughing and micro-cutting to micro-fatigue and micro-cracking with impact energy increasing.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 289
Author(s):  
Defa Li ◽  
Kaiming Wu ◽  
Hangyu Dong ◽  
Oleg Isayev ◽  
Oleksandr Hress

The effects of B, Ti-Nb, and Ti-Nb-B microalloying on the microstructure and properties of the coarse grain heat affected zone (CGHAZ) of C-Mn-Si-Mo wear-resistant steel have been investigated by means of thermal simulation, mechanical property test, microstructure analysis, and theoretical formula calculation. The B, Ti-Nb, and Ti-Nb-B microalloyed C-Mn-Si-Mo wear-resistant steels prepared by a controlled rolling + direct quenching + low temperature (CR + DQ + T) process have martensite/bainite (M/B) dual-phase microstructure and fully-refined effective grain size, which make the base metal to have high hardness and impact toughness. At the heat input of 20 kJ/cm, the impact toughness of CGHAZ of three kinds of microalloyed wear-resistant steels decreased in varying degrees. The main reasons for brittleness were coarse grain embrittlement and microstructural embrittlement. Ti-Nb-B microalloying can effectively prevent grain growth in CGHAZ while avoiding the formation of pearlite, small lump ferrite, and large grain carbides at the grain boundaries, thereby reducing the embrittlement of coarse grain and microstructure.


Alloy Digest ◽  
2012 ◽  
Vol 61 (2) ◽  

Abstract RUUKKI RAEX 300 (typical yield strength 900 MPa) is part of the Raex family of high-strength and wear-resistant steels with favorable hardness and impact toughness to extend life and decrease wear in structural components. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: SA-643. Producer or source: Rautaruukki Corporation.


Alloy Digest ◽  
2011 ◽  
Vol 60 (12) ◽  

Abstract Dillidur 450V is a water hardened wear-resistant steel with surface hardness at room temperature of 420-480 HB. The steel is easy to weld and bend. Hot working is not recommended. This datasheet provides information on composition, physical properties, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on wear resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-638. Producer or source: Dillinger Hütte GTS.


Vacuum ◽  
2021 ◽  
pp. 110427
Author(s):  
Lei Ba ◽  
Qian Gao ◽  
Wang Cen ◽  
Jing Wang ◽  
Zhenjiang Wen

2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350033 ◽  
Author(s):  
ŞERAFETTIN EKINCI ◽  
AHMET AKDEMIR ◽  
HUMAR KAHRAMANLI

Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.


Sign in / Sign up

Export Citation Format

Share Document