scholarly journals Research on an On-Chip MEMS Based Safety and Arming Device with a Mechanical Encryption System

Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 407 ◽  
Author(s):  
Kuang Fang ◽  
Tengjiang Hu ◽  
Xueting Zhang ◽  
Zhiming Zhang ◽  
Xiaohuang Jiang ◽  
...  

The design and characterization of microelectromechanical systems (MEMS) based on-chip SAD (Safety and Arming Device) are proposed. An encryption system has been integrated into the device to enhance its reliability during the electromagnetic interference. The conversion between safe status and arm status is reversible due to the bidirectional actuation design of the slider and pawl on the SOI (Silicon on Insulator) chip, being driven by the chevron electrothermal actuators. The width of each tooth on the slider, which contains coding information, is different from that of its adjacent neighbor. Additionally, the different teeth width, respectively 32 μm, 82 μm, requiring different decoding displacement of 100 μm and 150 μm, corresponds to the different decoding voltage of 13.5 V and 14.8 V. The travel range of interrupter in the SAD will only be limited by the chip dimension and be able to cover the motion of ±1 mm in the present research, due to the capability of motion retention. Finally, the SAD is integrated with a copper azide exploding chip to measure the average velocity of the titanium flyer for the application feasibility validation.

2002 ◽  
Vol 715 ◽  
Author(s):  
V. Chu ◽  
J. Gaspar ◽  
J.P. Conde

AbstractThis paper presents the fabrication and characterization of MEMS structures on glass substrates using thin film silicon technology and surface micromachining. The technology developed to process bridge and cantilever structures as well as the electromechanical characterization of these structures is discussed. This technology can enable the expansion of MEMS to applications requiring large area and/or flexible substrates. The main results for the characterization of the movement of the structures are as follows: (1) in the quasi-DC regime and at low applied voltages, the response is linear with the applied dc voltage. Using an electromechanical model which takes into account the constituent materials and geometry of the bilayer, it is possible to extract the deflection of the structures. This estimate suggests that it is possible to control the actuation of these structures to deflections on the sub-nanometric scale; (2) resonance frequencies of up to 20 MHz have been measured on hydrogenated amorphous silicon (a-Si:H) bridge structures with quality factors (Q) of 70-100 in air. The frequency depends inversely on the square of the structure length, as predicted by the mechanical model; and (3) using an integrated permanent magnet/magnetic sensor system, it is possible to measure the structure movement on-chip and to obtain an absolute calibration of the deflection of the structures.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 310
Author(s):  
Muhammad Mubasher Saleem ◽  
Shayaan Saghir ◽  
Syed Ali Raza Bukhari ◽  
Amir Hamza ◽  
Rana Iqtidar Shakoor ◽  
...  

This paper presents a new design of microelectromechanical systems (MEMS) based low-g accelerometer utilizing mode-localization effect in the three degree-of-freedom (3-DoF) weakly coupled MEMS resonators. Two sets of the 3-DoF mechanically coupled resonators are used on either side of the single proof mass and difference in the amplitude ratio of two resonator sets is considered as an output metric for the input acceleration measurement. The proof mass is electrostatically coupled to the perturbation resonators and for the sensitivity and input dynamic range tuning of MEMS accelerometer, electrostatic electrodes are used with each resonator in two sets of 3-DoF coupled resonators. The MEMS accelerometer is designed considering the foundry process constraints of silicon-on-insulator multi-user MEMS processes (SOIMUMPs). The performance of the MEMS accelerometer is analyzed through finite-element-method (FEM) based simulations. The sensitivity of the MEMS accelerometer in terms of amplitude ratio difference is obtained as 10.61/g for an input acceleration range of ±2 g with thermomechanical noise based resolution of 0.22 and nonlinearity less than 0.5%.


2001 ◽  
Vol 687 ◽  
Author(s):  
Jürgen Brünahl ◽  
Alex M. Grishin ◽  
Sergey I. Khartsev ◽  
Carl Österberg

AbstractWe report on comprehensive characterization of piezoelectric shear mode inkjet actuators micromachined into bulk Pb(Zr0.53Ti0.47)O3 (PZT) ceramics. The paper starts with an overview of different inkjet technologies such as continuous jet and drop-on-demand systems, whereat main attention is turned on piezoelectric systems particularly Xaar-type shear mode inkjet color printheads. They are an example of complex microelectromechanical systems (MEMS) and comprise a ferroelectric array of 128 active ink channels (75νm wide and 360νm deep). Detailed information about manufacturing and principles of operation are given. Several techniques to control manufacturing processes and to characterize properties of the piezoelectric material are described: dielectric spectroscopy to measure dielectric permittivity ε and loss tanσ; ferroelectric hysteresis P-E loop tracing to get remnant polarization Pr and coercive field Ec, and a novel pulsed technique to quantify functional properties of the PZT actuator such as acoustic resonant frequencies and electromechanical coupling factor. Stroboscope technique has been employed to find correlation between the degradation of ink-jet performance and heat/high voltage treatment resulting in ferroelectric fatigue.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoel Sebbag ◽  
Eliran Talker ◽  
Alex Naiman ◽  
Yefim Barash ◽  
Uriel Levy

AbstractRecently, there has been growing interest in the miniaturization and integration of atomic-based quantum technologies. In addition to the obvious advantages brought by such integration in facilitating mass production, reducing the footprint, and reducing the cost, the flexibility offered by on-chip integration enables the development of new concepts and capabilities. In particular, recent advanced techniques based on computer-assisted optimization algorithms enable the development of newly engineered photonic structures with unconventional functionalities. Taking this concept further, we hereby demonstrate the design, fabrication, and experimental characterization of an integrated nanophotonic-atomic chip magnetometer based on alkali vapor with a micrometer-scale spatial resolution and a magnetic sensitivity of 700 pT/√Hz. The presented platform paves the way for future applications using integrated photonic–atomic chips, including high-spatial-resolution magnetometry, near-field vectorial imaging, magnetically induced switching, and optical isolation.


Author(s):  
Keye Sun ◽  
Junyi Gao ◽  
Robert Costanzo ◽  
Ta-Ching Tzu ◽  
Steven M. Bowers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document