scholarly journals Durability and Recoverability of Soft Lithographically Patterned Hydrogel Molds for the Formation of Phase Separation Membranes

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Asad Asad ◽  
Masoud Rastgar ◽  
Hadi Nazaripoor ◽  
Mohtada Sadrzadeh ◽  
Dan Sameoto

Hydrogel-facilitated phase separation (HFPS) has recently been applied to make microstructured porous membranes by modified phase separation processes. In HFPS, a soft lithographically patterned hydrogel mold is used as a water content source that initiates the phase separation process in membrane fabrication. However, after each membrane casting, the hydrogel content changes due to the diffusion of organic solvent into the hydrogel from the original membrane solution. The absorption of solvent into the hydrogel mold limits the continuous use of the mold in repeated membrane casts. In this study, we investigated a simple treatment process for hydrogel mold recovery, consisting of warm and cold treatment steps to provide solvent extraction without changing the hydrogel mold integrity. The best recovery result was 96%, which was obtained by placing the hydrogel in a warm water bath (50 °C) for 10 min followed by immersing in a cold bath (23 °C) for 4 min and finally 4 min drying in air. This recovery was attributed to nearly complete solvent extraction without any deformation of the hydrogel structure. The reusability of hydrogel can assist in the development of a continuous membrane fabrication process using HFPS.

2019 ◽  
Author(s):  
Matthias Wessling

Synthetic membranes for desalination and ion separation processes are a prerequisite for the supply of safe and sufficient drinking water as well as smart process water tailored to its application. This requires a versatile membrane fabrication methodology. Starting from an extensive set of new ion separation membranes synthesized with a layer-by-layer methodology, we demonstrate for the first time that an artificial neural network (ANN) can predict ion retention and water flux values based on membrane fabrication conditions. The predictive ANN is used in a local single-objective optimization approach to identify manufacturing conditions that improve permeability of existing membranes. A deterministic global multi-objective optimization is performed in order to identify the upper bound (Pareto front) of the delicate trade-off between ion retention characteristics and permeability. Ultimately, a coupling of the ANN into a hybrid model enables physical insight into the influence of fabrication conditions on apparent membrane properties.


2021 ◽  
pp. 119227
Author(s):  
Irish Valerie Maggay ◽  
Maria Charisma Anne M. Suba ◽  
Hana Nur Aini ◽  
Chien-Jung Wu ◽  
Shuo-Hsi Tang ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (14) ◽  
pp. 7800-7809 ◽  
Author(s):  
Sheng-Hui Liu ◽  
Min Liu ◽  
Zhen-Liang Xu ◽  
Yong-Ming Wei

A novel antifouling polyethersulfone (PES) hollow fiber membrane was modified by the addition of bisphenol sulfuric acid (BPA-PS) using a reverse thermally induced phase separation (RTIPS) process.


The Analyst ◽  
1996 ◽  
Vol 121 (5) ◽  
pp. 601-606 ◽  
Author(s):  
Yongyi Luo ◽  
Rashed Al-Othman ◽  
Jaromir Ruzicka ◽  
Gary D. Christian

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1576
Author(s):  
Biswaroop Mukherjee ◽  
Buddhapriya Chakrabarti

Surface segregation of the low molecular weight component of a polymeric mixture is a ubiquitous phenomenon that leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer–polymer ( O P ) and oligomer–gel ( O G ) systems following a temperature quench that induces demixing of components. We compute equilibrium and time varying migrant (oligomer) density profiles and wetting layer thickness in these systems using coarse grained molecular dynamics (CGMD) and mesoscale hydrodynamics (MH) simulations. Such multiscale methods quantitatively describe the phenomena over a wide range of length and time scales. We show that surface migration in gel–oligomer systems is significantly reduced on account of network elasticity. Furthermore, the phase separation processes are significantly slowed in gels leading to the modification of the well known Lifshitz–Slyozov–Wagner (LSW) law ℓ ( τ ) ∼ τ 1 / 3 . Our work allows for rational design of polymer/gel–oligomer mixtures with predictable surface segregation characteristics that can be compared against experiments.


Sign in / Sign up

Export Citation Format

Share Document