scholarly journals Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1341
Author(s):  
Piotr Kurgan

High-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated inductors within a practical timeframe, especially in terms of the computational expense of training data acquisition. Application of the constructed surrogate model for rapid design optimization of a compact on-chip inductor is demonstrated. The optimized EM-validated design solution can be reached at a low computational cost, which is a considerable improvement over existing approaches. In addition, this work provides a description and illustrates the usefulness of a multi-fidelity design optimization method incorporating EM computational models of graduated complexity and local polynomial approximations managed by an output space mapping optimization framework. As shown by the application example, the final design solution is obtained at the cost of a few high-fidelity EM simulations of a small-size integrated coil. A supplementary description of variable-fidelity EM computational models and a trade-off between model accuracy and its processing time complements the work.

2016 ◽  
Vol 33 (7) ◽  
pp. 2007-2018 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as EM simulation models with various levels of fidelity (coarse, medium and fine). Adaptive procedure for switching between the models of increasing accuracy in the course of the optimization process is implemented. Numerical and experimental case studies are provided to validate correctness of the design approach. Findings Appropriate combination of suitable design optimization algorithm embedded in a trust region framework, as well as model selection techniques, allows for considerable reduction of the antenna optimization cost compared to conventional methods. Research limitations/implications The study demonstrates feasibility of EM-simulation-driven design optimization of antennas at low computational cost. The presented techniques reach beyond the common design approaches based on direct optimization of EM models using conventional gradient-based or derivative-free methods, particularly in terms of reliability and reduction of the computational costs of the design processes. Originality/value Simulation-driven design optimization of contemporary antenna structures is very challenging when high-fidelity EM simulations are utilized for performance utilization of structure at hand. The proposed variable-fidelity optimization technique with adjoint sensitivity and trust regions permits rapid optimization of numerically demanding antenna designs (here, dielectric resonator antenna and compact monopole), which cannot be achieved when conventional methods are of use. The design cost of proposed strategy is up to 60 percent lower than direct optimization exploiting adjoint sensitivities. Experimental validation of the results is also provided.


2016 ◽  
Vol 33 (4) ◽  
pp. 1095-1113 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose – The purpose of this paper is to investigate strategies for expedited dimension scaling of electromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling. Design/methodology/approach – A fast inverse surrogate modeling technique is described for dimension scaling of microwave and antenna structures. The model is established using reference designs obtained for cheap underlying low-fidelity model and corrected to allow structure scaling at high accuracy level. Numerical and experimental case studies are provided demonstrating feasibility of the proposed approach. Findings – It is possible, by appropriate combination of surrogate modeling techniques, to establish an inverse model for explicit determination of geometry dimensions of the structure at hand so as to re-design it for various operating frequencies. The scaling process can be concluded at a low computational cost corresponding to just a few evaluations of the high-fidelity computational model of the structure. Research limitations/implications – The present study is a step toward development of procedures for rapid dimension scaling of microwave and antenna structures at high-fidelity EM-simulation accuracy. Originality/value – The proposed modeling framework proved useful for fast geometry scaling of microwave and antenna structures, which is very laborious when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted dimension scaling of microwave components at the EM-simulation level.


2017 ◽  
Vol 34 (2) ◽  
pp. 403-419 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering the design cost and improve reliability. Design/methodology/approach There are two algorithmic frameworks presented, both fully deterministic. The first algorithm involves creating a path covering the Pareto front and arranged as a sequence of patches relocated in the course of optimization. Response correction techniques are used to find the Pareto front representation at the high-fidelity EM simulation level. The second algorithm exploits Pareto front exploration where subsequent Pareto-optimal designs are obtained by moving along the front by means of solving appropriately defined local constrained optimization problems. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving expensive EM-simulation models of impedance transformer structures. Findings It is possible, by means of combining surrogate modeling techniques and constrained local optimization, to identify the set of alternative designs representing Pareto-optimal solutions, in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures. Multi-objective optimization for the considered class of structures can be realized using deterministic approaches without defaulting to evolutionary methods. Research limitations/implications The present study can be considered a step toward further studies on expedited optimization of computationally expensive simulation models for miniaturized microwave components. Originality/value The proposed algorithmic solutions proved useful for expedited multi-objective design optimization of miniaturized microwave structures. The problem is extremely challenging when using conventional methods, in particular evolutionary algorithms. To the authors’ knowledge, this is one of the first attempts to investigate deterministic surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.


2016 ◽  
Vol 33 (1) ◽  
pp. 184-201 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose – Strategies for accelerated multi-objective optimization of compact microwave and RF structures are investigated, including the possibility of exploiting surrogate modeling techniques for electromagnetic (EM)-driven design speedup for such components. The paper aims to discuss these issues. Design/methodology/approach – Two algorithmic frameworks are described that are based on fast response surface approximation models, structure decomposition, and Pareto front refinement. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving multi-objective optimization of miniaturized microwave passives and expensive EM-simulation models of such structures. Findings – It is possible, through appropriate combination of the surrogate modeling techniques and response correction methods, to identify the set of alternative designs representing the best possible trade-offs between conflicting design objectives in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures. Research limitations/implications – The present study sets a direction for further studied on expedited optimization of computationally expensive simulation models for miniaturized microwave components. Originality/value – The proposed algorithmic framework proved useful for fast design of microwave structures, which is extremely challenging when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo-yong Park ◽  
Seok-Jun Hong ◽  
Sofie L. Valk ◽  
Casey Paquola ◽  
Oualid Benkarim ◽  
...  

AbstractThe pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.


Sign in / Sign up

Export Citation Format

Share Document