scholarly journals Extension of the Shelf-Life of Fresh Pasta Using Chickpea Flour Fermented with Selected Lactic Acid Bacteria

2020 ◽  
Vol 8 (9) ◽  
pp. 1322
Author(s):  
Rosa Schettino ◽  
Erica Pontonio ◽  
Marco Gobbetti ◽  
Carlo Giuseppe Rizzello

Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate.

Author(s):  
Rihua Xu ◽  
Ren Sa ◽  
Junwei Jia ◽  
Lanlan Li ◽  
Xiao Wang ◽  
...  

The demand for “preservative-free” food products is rising, and biopreservation seems to be a potential alternative to replace or reduce the use of chemical preservatives. This study’s objective was to assess the antifungal activity of lactic acid bacteria (LAB) (n = 98) and the efficacy and applicability of the chosen bioprotective cultures against fungal spoilers in dairy products. First, 14 strains of antifungal strains were preliminarily screened by in vitro tests against Pichia pastoris D3, Aspergillus niger D1, Geotrichum candidum N1, Kluyveromyces marxianus W1, and Penicillium chrysogenum B1 and validated by challenge tests in yogurts, indicating that the fungal-inhibiting activity of LAB was species specific and yogurts fermented with antifungal LAB cultures were more effective in extending the shelf life. Secondly, the chosen 14 LAB strains were identified by the 16SrDNA sequence analysis and carbohydrate fermentation test. The results were as follows: 9 strains were Lactobacillus plantarum , 3 were Lactobacillus paracasei , 1 was Enterococus faecium , and 1 was Lactobacillus rhamnosus. Among them, active L. plantarum N7 was the chosen and studied factor that affects the antifungal activity using the response surface methodology (RSM). Finally, in situ tests were conducted to validate the activity of L. plantarum N7 in actual dairy products (whey beverage). Physicochemical and microbial indices of whey beverage during storage period exhibited that antifungal L. plantarum N7 could slow the fungal growth and be candidates of interest for industrial applications.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 316
Author(s):  
Marco Montemurro ◽  
Erica Pontonio ◽  
Rossana Coda ◽  
Carlo Giuseppe Rizzello

Due to the increasing demand for milk alternatives, related to both health and ethical needs, plant-based yogurt-like products have been widely explored in recent years. With the main goal to obtain snacks similar to the conventional yogurt in terms of textural and sensory properties and ability to host viable lactic acid bacteria for a long-time storage, several plant-derived ingredients (e.g., cereals, pseudocereals, legumes, and fruits) as well as technological solutions (e.g., enzymatic and thermal treatments) have been investigated. The central role of fermentation in yogurt-like production led to specific selections of lactic acid bacteria strains to be used as starters to guarantee optimal textural (e.g., through the synthesis of exo-polysaccharydes), nutritional (high protein digestibility and low content of anti-nutritional compounds), and functional (synthesis of bioactive compounds) features of the products. This review provides an overview of the novel insights on fermented yogurt-like products. The state-of-the-art on the use of unconventional ingredients, traditional and innovative biotechnological processes, and the effects of fermentation on the textural, nutritional, functional, and sensory features, and the shelf life are described. The supplementation of prebiotics and probiotics and the related health effects are also reviewed.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Christos Bontsidis ◽  
Athanasios Mallouchos ◽  
Antonia Terpou ◽  
Anastasios Nikolaou ◽  
Georgia Batra ◽  
...  

On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, dark berries and to be one of the richest sources of antioxidants. The juice was subsequently fermented inoculating L. paracasei SP5 for 48 h at 30 °C. The fermented juices were left at 4 °C and tested regarding microbiological and physicochemical characteristics for 4 weeks. The potentially probiotic strain was proved capable of performing lactic acid fermentation at 30 °C. Cell viability of L. paracasei was detected in high levels during fermentation and the whole storage period, while the fermented juice showed higher levels of viability in juice with 40.3 g/L of initial sugar concentration. No ethanol was detected in the final fermented juice. Fermented chokeberry juice was characterized by aromatic desirable volatiles, which were retained in adequate levels for the whole storage period. Specifically, the occurrence of organic esters detected in fermented juices is considered as positive evidence of the provision of fruity and floral notes to the final product. During storage, total phenolics content and antioxidant activity were observed in higher levels in fermented chokeberry juice compared with non-fermented juice. Subsequently, fermentation of chokeberry juice by potentially probiotic lactic acid bacteria could provide high industrialization potential, providing the market with a nutritional beverage of good volatile quality with an enhanced shelf-life compared with an unfermented fresh juice.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 604 ◽  
Author(s):  
Rosa Schettino ◽  
Erica Pontonio ◽  
Carlo Giuseppe Rizzello

A biotechnological approach including enzymatic treatment (protease and xylanase) and lactic acid bacteria fermentation has been evaluated to enhance the nutritional value of semolina pasta enriched with hemp, chickpea and milling by-products. The intense (up to circa, (ca.) 70%) decrease in the peptide profile area and (up to two-fold) increase in total free amino acids, compared to the untreated raw materials, highlighted the potential of lactic acid bacteria to positively affect their in vitro protein digestibility. Fermented and unfermented ingredients have been characterized and used to fortify pasta made under pilot-plant scale. Due to the high contents of protein (ca. 13%) and fiber (ca. 6%) and according to the Regulation of the European Community (EC) No. 1924/2006 fortified pasta can be labelled as a “source of fiber” and a “source of protein”. The use of non-wheat flours increased the content of anti-nutritional factors as compared to the control pasta. Nevertheless, fermentation with lactic acid bacteria led to significant decreases in condensed tannins (ca. 50%), phytic acid and raffinose (ca. ten-fold) contents as compared to the unfermented pasta. Moreover, total free amino acids and in vitro protein digestibility values were 60% and 70%, respectively, higher than pasta made only with semolina. Sensory analysis highlighted a strong effect of the fortification on the sensory profile of pasta.


2018 ◽  
Vol 9 ◽  
Author(s):  
Marcia Leyva Salas ◽  
Anne Thierry ◽  
Mathilde Lemaître ◽  
Gilles Garric ◽  
Marielle Harel-Oger ◽  
...  

Food Control ◽  
2014 ◽  
Vol 46 ◽  
pp. 91-97 ◽  
Author(s):  
Elsie Y.L. Cheong ◽  
Amrita Sandhu ◽  
Jayaram Jayabalan ◽  
Thu Thi Kieu Le ◽  
Nguyen Thi Nhiep ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document