scholarly journals Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells

2020 ◽  
Vol 8 (12) ◽  
pp. 1921
Author(s):  
Maria Jose Salar-Garcia ◽  
Oluwatosin Obata ◽  
Halil Kurt ◽  
Kartik Chandran ◽  
John Greenman ◽  
...  

Bacteria are the driving force of the microbial fuel cell (MFC) technology, which benefits from their natural ability to degrade organic matter and generate electricity. The development of an efficient anodic biofilm has a significant impact on the power performance of this technology so it is essential to understand the effects of the inoculum nature on the anodic bacterial diversity and establish its relationship with the power performance of the system. Thus, this work aims at analysing the impact of 3 different types of inoculum: (i) stored urine, (ii) sludge and (iii) effluent from a working MFC, on the microbial community of the anodic biofilm and therefore on the power performance of urine-fed ceramic MFCs. The results showed that MFCs inoculated with sludge outperformed the rest and reached a maximum power output of 40.38 mW·m−2anode (1.21 mW). The power performance of these systems increased over time whereas the power output by MFCs inoculated either with stored urine or effluent decreased after day 30. These results are directly related to the establishment and adaptation of the microbial community on the anode during the assay. Results showed the direct relationship between the bacterial community composition, originating from the different inocula, and power generation within the MFCs.

2014 ◽  
Vol 548-549 ◽  
pp. 855-859
Author(s):  
Chin Tsan Wang

Sediment microbial fuel cells (SMFCs) produce electricity through the bacterial oxidation of organic matter contained in the sediment, but the power density is limited and needs to be improved. In this study, a new design of a fined-type cathode with carbon cloth embedded partly, as opposed to completely, in SMFCs were utilized. As a result, the design allowing the cathode to contact air will have a positive effect on the power performance and decrease the resistance of the inner system. The power density in the cases where the cathode was about half soaked was about two folds the case where it was soaked completely. Furthermore, SMFCs would also be seen as a driving force in hastening the COD removal because it was about 1.92-folds the COD removal of the cases where SMFCs where not present. These findings can be applied to sewage treatment and improving the power performance in SMFCs.


RSC Advances ◽  
2019 ◽  
Vol 9 (37) ◽  
pp. 21460-21472 ◽  
Author(s):  
Guozhen Wang ◽  
Yating Guo ◽  
Jiaying Cai ◽  
Hongyu Wen ◽  
Zhen Mao ◽  
...  

The objective of this study is to assess bioelectricity generation, pollutant removal and the bacterial communities on anodes in constructed wetlands coupled with microbial fuel cells, through feeding the systems with three different types of synthetic wastewater.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Wen Zhang ◽  
Wu Li ◽  
Chenjie Ma ◽  
Xiaoling Wu ◽  
Xunde Li ◽  
...  

A large amount of dairy manure is produced annually in the Ningxia Hui Autonomous Region of China due to the increase in food-producing animal agriculture in this region. The presence of bovine-originated zoonotic, especially human, pathogenic bacteria in untreated manure poses a significant threat to the environment and to public health. However, little is known about the composition, diversity, and abundance of bacterial communities in untreated dairy manure in the Ningxia region. In this study, the microbial community structure of the dairy farm matrix was characterized through 16S rDNA sequencing. The impact of manure treatment methods on bacterial communities was also analyzed. The results showed that the microbial community in dairy manure contained both beneficial bacteria and pathogens, with Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Actinobacteria as dominant phyla. The results also showed the diversity and variety of abundance of zoonotic pathogens among different matrices. The number of pathogens was found to increase significantly in the accumulated but untreated manure, which appeared to be the main matrix of dairy farms that accumulated pathogens including zoonotic pathogens. Findings from this study suggested that farm management, particularly proper treatment of manure, is essential to achieve a shift in the bacterial community composition and a reduction in the environmental load of pathogens including zoonotic pathogens.


2014 ◽  
Vol 156 ◽  
pp. 84-91 ◽  
Author(s):  
James P. Stratford ◽  
Nelli J. Beecroft ◽  
Robert C.T. Slade ◽  
André Grüning ◽  
Claudio Avignone-Rossa

2020 ◽  
Vol 10 (23) ◽  
pp. 8570
Author(s):  
Keren Yanuka-Golub ◽  
Leah Reshef ◽  
Judith Rishpon ◽  
Uri Gophna

Microbial fuel cells (MFCs) can generate electricity simultaneously with wastewater treatment. For MFCs to be considered a cost-effective treatment technology, they should quickly re-establish a stable electroactive microbial community in the case of system failure. In order to shorten startup times, temporal studies of anodic biofilm development are required, however, frequent sampling can reduce the functionality of the system due to electroactive biomass loss; therefore, on-line monitoring of the microbial community without interfering with the system’s stability is essential. Although all anodic biofilms were composed of Desulfuromonadaceae, MFCs differed in startup times. Generally, a Desulfuromonadaceae-dominated biofilm was associated with faster startup MFCs. A positive PCR product of a specific 16S rRNA gene PCR primer set for detecting the acetate-oxidizing, Eticyclidine (PCE)-dechlorinating Desulfuromonas group was associated with efficient MFCs in our samples. Therefore, this observation could serve as a biomarker for monitoring the formation of an efficient anodic biofilm. Additionally, we successfully enriched an electroactive consortium from an active anode, also resulting in a positive amplification of the specific primer set. Direct application of this enrichment to a clean MFC anode showed a substantial reduction of startup times from 18 to 3 days.


2017 ◽  
Vol 76 (3) ◽  
pp. 107-116 ◽  
Author(s):  
Klea Faniko ◽  
Till Burckhardt ◽  
Oriane Sarrasin ◽  
Fabio Lorenzi-Cioldi ◽  
Siri Øyslebø Sørensen ◽  
...  

Abstract. Two studies carried out among Albanian public-sector employees examined the impact of different types of affirmative action policies (AAPs) on (counter)stereotypical perceptions of women in decision-making positions. Study 1 (N = 178) revealed that participants – especially women – perceived women in decision-making positions as more masculine (i.e., agentic) than feminine (i.e., communal). Study 2 (N = 239) showed that different types of AA had different effects on the attribution of gender stereotypes to AAP beneficiaries: Women benefiting from a quota policy were perceived as being more communal than agentic, while those benefiting from weak preferential treatment were perceived as being more agentic than communal. Furthermore, we examined how the belief that AAPs threaten men’s access to decision-making positions influenced the attribution of these traits to AAP beneficiaries. The results showed that men who reported high levels of perceived threat, as compared to men who reported low levels of perceived threat, attributed more communal than agentic traits to the beneficiaries of quotas. These findings suggest that AAPs may have created a backlash against its beneficiaries by emphasizing gender-stereotypical or counterstereotypical traits. Thus, the framing of AAPs, for instance, as a matter of enhancing organizational performance, in the process of policy making and implementation, may be a crucial tool to countering potential backlash.


2020 ◽  
Vol 85 ◽  
pp. 183-196
Author(s):  
Y Sun ◽  
J Liu ◽  
Q Yao ◽  
J Jin ◽  
X Liu ◽  
...  

Viruses are the most abundant and ubiquitous biological entities in various ecosystems, yet few investigations of viral communities in wetlands have been performed. To address this data gap, water samples from 6 wetlands were randomly collected across northeast China; viruses in the water were concentrated by sequential tangential flow filtration, and viral communities were assessed through randomly amplified polymorphic DNA-PCR (RAPD-PCR) with 4 decamer oligonucleotide primers. Principal coordinate analysis and hierarchical clustering analysis of the DNA fingerprints showed that viral community compositions differed among the water samples: communities in the 2 coastal wetlands were more similar to each other than to those in the 4 freshwater wetlands. The Shannon-Weaver index (H) and evenness index (E) of the RAPD-PCR fingerprint also differed among the 6 wetlands. Mantel test revealed that the changes in viral communities in wetland water were most closely related to the water NH4+-N and inorganic C content, followed by total K, P, C and NO3--N. DNA sequence analysis of the excised bands revealed that viruses accounted for ~40% of all sequences. Among the hit viral homologs, the majority belonged to the Microviridae. Moreover, variance partitioning analysis showed that the viral community contributed 24.58% while environmental factors explained 30.56% of the bacterial community variation, indicating that the bacterial community composition was strongly affected by both viral community and water variables. This work provides an initial outline of the viral communities from different types of wetlands in northeast China and improves our understanding of the viral diversity in these ecosystems.


Sign in / Sign up

Export Citation Format

Share Document