scholarly journals Assessment of Temporal Effects of a Mud Volcanic Eruption on the Bacterial Community and Their Predicted Metabolic Functions in the Mud Volcanic Sites of Niaosong, Southern Taiwan

2021 ◽  
Vol 9 (11) ◽  
pp. 2315
Author(s):  
Ho-Chuan Hsu ◽  
Jung-Sheng Chen ◽  
Viji Nagarajan ◽  
Bashir Hussain ◽  
Shih-Wei Huang ◽  
...  

The microbial communities inhabiting mud volcanoes have received more attention due to their noteworthy impact on the global methane cycle. However, the impact of temporal effects of volcanic eruptions on the microbial community’s diversity and functions remain poorly characterized. This study aimed to underpin the temporal variations in the bacterial community’s diversity and PICRUSt-predicted functional profile changes of mud volcanic sites located in southern Taiwan using 16S rRNA gene sequencing. The physicochemical analysis showed that the samples were slightly alkaline and had elevated levels of Na+, Cl−, and SO42−. Comparatively, the major and trace element contents were distinctly higher, and tended to be increased in the long-period samples. Alpha diversity metrics revealed that the bacterial diversity and abundance were lesser in the initial period, but increased over time. Instead, day 96 and 418 samples showed reduced bacterial abundance, which may have been due to the dry spell that occurred before each sampling. The initial-period samples were significantly abundant in haloalkaliphilic marine-inhabiting, hydrocarbon-degrading bacterial genera such as Marinobacter, Halomonas, Marinobacterium, and Oceanimonas. Sulfur-reducing bacteria such as Desulfurispirillum and Desulfofarcimen were found dominant in the mid-period samples, whereas the methanogenic archaeon Methanosarcina was abundant in the long-period samples. Unfortunately, heavy precipitation encountered during the mid and long periods may have polluted the volcanic site with animal pathogens such as Desulfofarcimen and Erysipelothrix. The functional prediction results showed that lipid biosynthesis and ubiquinol pathways were significantly abundant in the initial days, and the super pathway of glucose and xylose degradation was rich in the long-period samples. The findings of this study highlighted that the temporal effects of a mud volcanic eruption highly influenced the bacterial diversity, abundance, and functional profiles in our study site.

2021 ◽  
Author(s):  
Roberta D'Agostino ◽  
Claudia Timmreck

<p>The impact of volcanic forcing on tropical precipitation is investigated in a new set of sensitivity experiments within Max Planck Institute Grand Ensemble framework. Five ensembles are created, each containing 100 realizations for an idealized tropical volcanic eruption located at the equator, analogous the Mt. Pinatubo eruption, with emissions covering a range of 2.5 - 40 Tg S. The ensembles provide an excellent database to disentangle the influence of volcanic forcing on regional monsoons and tropical hydroclimate over the wide spectrum of the climate internal variability. Monsoons are generally weaker during the two years after volcanic eruptions and their weakening is a function of emissions: the strongest the volcanic eruption, the weakest are the land monsoons. The extent of rain belt is also affected: the monsoon area is overall narrower than the unperturbed control simulation. While the position of main ascents does not change, the idealised tropical volcanic eruption supports the shrinking of Hadley Cell's ascent and the narrowing of the ITCZ. We investigate this behavior by analysing the changes in Hadley/Walker circulation, net energy input and energy budget to find analogies/differences with global warming.</p>


2018 ◽  
Author(s):  
Sebastian Illing ◽  
Christopher Kadow ◽  
Holger Pohlmann ◽  
Claudia Timmreck

Abstract. The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the time scale of a few years; but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the question emerges how predictable is the response of the climate system to future eruptions? By this we mean, to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) phase among other things. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions. We investigate the response of different climate variables, including near-surface air temperature, precipitation, frost days, and sea ice area fraction. Our results show that the average global cooling response over four years of about 0.2 K and the precipitation decrease of about 0.025 mm/day, is relatively robust throughout the different experiments and seemingly independent of the initialization state. However, on a regional scale, we find substantial differences between the initializations. The cooling effect in the North Atlantic and Europe lasts longer and the Arctic sea ice increase is stronger than in the simulations initialized in 2014. In contrast, the forecast initialized with a negative PDO shows a prolonged cooling in the North Pacific basin.


2018 ◽  
Vol 9 (2) ◽  
pp. 701-715 ◽  
Author(s):  
Sebastian Illing ◽  
Christopher Kadow ◽  
Holger Pohlmann ◽  
Claudia Timmreck

Abstract. The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the timescale of a few years, but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the following question emerges: how predictable is the response of the climate system to future eruptions? By this we mean to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system, which is based on the MPI-ESM, in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) phase. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year and consists of 10 ensemble members. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions. We investigate the response of different climate variables, including near-surface air temperature, precipitation, frost days, and sea ice area fraction. Our results show that the average global cooling response over 4 years of about 0.2 K and the precipitation decrease of about 0.025 mm day−1 is relatively robust throughout the different experiments and seemingly independent of the initialization state. However, on a regional scale, we find substantial differences between the initializations. The cooling effect in the North Atlantic and Europe lasts longer and the Arctic sea ice increase is stronger in the simulations initialized in 2014. In contrast, the forecast initialized in 2012 with a negative PDO shows a prolonged cooling in the North Pacific basin.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 545
Author(s):  
Grzegorz P. Łysiak ◽  
Krzysztof Rutkowski ◽  
Dorota Walkowiak-Tomczak

Late pear cultivars, such as ‘Conference’, can be stored for a long period if kept in good storage conditions. A three-year study (2011–2013) compared the impact of six-month storage using four technologies—normal atmosphere, normal atmosphere + 1-methylcyclopropene (1-MCP), controlled atmosphere, and controlled atmosphere + 1-MCP—on the quality parameters of ‘Conference’ pears, such as mass loss, firmness, total soluble solids, acidity, antioxidant capacity, and the incidence of diseases and disorders. Additionally, the study analysed different storage conditions in terms of profitability, based on the market prices for pears in the seasons during which the pears were stored. The storage conditions had a very strong influence on the fruit quality parameters, and were found to affect most visibly the mass loss and the incidence of postharvest diseases and disorders. The storage of ‘Conference’ pears for 180 days in normal atmosphere is not economically viable, even if the fruit is subjected to 1-MCP treatment; at the same time, it is profitable to store ‘Conference’ pears in controlled atmosphere for the same period, no matter whether 1-MCP was applied or not.


2021 ◽  
Vol 10 (4) ◽  
pp. 209
Author(s):  
Chih-Ming Tseng ◽  
Yie-Ruey Chen ◽  
Chwen-Ming Chang ◽  
Yung-Sheng Chue ◽  
Shun-Chieh Hsieh

This study explores the impact of rainfall on the followed-up landslides after a severe typhoon and the relationship between various rainfall events and the occurrence, scale, and regional characteristics of the landslides, including second landslides. Moreover, the influence of land disturbance was evaluated. The genetic adaptive neural network was used in combination with the texture analysis of the geographic information system for satellite image classification and interpretation to analyze land-use change and retrieve disaster records and surface information after five rainfall events from Typhoon Morakot (2009) to Typhoon Nanmadol (2011). The results revealed that except for extreme Morakot rains, the greater the degree of slope disturbance after rain, the larger the exposed slope. Extreme rainfall similar to Morakot strikes may have a greater impact on the bare land area than on slope disturbance. Moreover, the relationship between the bare land area and the index of land disturbance condition (ILDC) is positive, and the ratio of the bare land area to the quantity of bare land after each rainfall increases with the ILDC. With higher effective accumulative rainfall on the slope in the study area or greater slope disturbance, the landslide area at the second landslide point tended to increase.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Relvas ◽  
A. Regueira-Iglesias ◽  
C. Balsa-Castro ◽  
F. Salazar ◽  
J. J. Pacheco ◽  
...  

AbstractThe present study used 16S rRNA gene amplicon sequencing to assess the impact on salivary microbiome of different grades of dental and periodontal disease and the combination of both (hereinafter referred to as oral disease), in terms of bacterial diversity, co-occurrence network patterns and predictive models. Our scale of overall oral health was used to produce a convenience sample of 81 patients from 270 who were initially recruited. Saliva samples were collected from each participant. Sequencing was performed in Illumina MiSeq with 2 × 300 bp reads, while the raw reads were processed according to the Mothur pipeline. The statistical analysis of the 16S rDNA sequencing data at the species level was conducted using the phyloseq, DESeq2, Microbiome, SpiecEasi, igraph, MixOmics packages. The simultaneous presence of dental and periodontal pathology has a potentiating effect on the richness and diversity of the salivary microbiota. The structure of the bacterial community in oral health differs from that present in dental, periodontal or oral disease, especially in high grades. Supragingival dental parameters influence the microbiota’s abundance more than subgingival periodontal parameters, with the former making a greater contribution to the impact that oral health has on the salivary microbiome. The possible keystone OTUs are different in the oral health and disease, and even these vary between dental and periodontal disease: half of them belongs to the core microbiome and are independent of the abundance parameters. The salivary microbiome, involving a considerable number of OTUs, shows an excellent discriminatory potential for distinguishing different grades of dental, periodontal or oral disease; considering the number of predictive OTUs, the best model is that which predicts the combined dental and periodontal status.


1998 ◽  
Vol 18 (1) ◽  
pp. 11 ◽  
Author(s):  
Salinger

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weizheng Qu ◽  
Fei Huang ◽  
Jinping Zhao ◽  
Ling Du ◽  
Yong Cao

AbstractThe parasol effect of volcanic dust and aerosol caused by volcanic eruption results in the deepening and strengthening of the Arctic vortex system, thus stimulating or strengthening the Arctic Oscillation (AO). Three of the strongest AOs in more than a century have been linked to volcanic eruptions. Every significant fluctuation of the AO index (AOI = ΔH_middle latitudes − ΔH_Arctic) for many years has been associated with a volcanic eruption. Volcanic activity occurring at different locations in the Arctic vortex circulation will exert different effects on the polar vortex.


2021 ◽  
Author(s):  
Rafael Castro ◽  
Tushar Mittal ◽  
Stephen Self

<p>The 1883 Krakatau eruption is one of the most well-known historical volcanic eruptions due to its significant global climate impact as well as first recorded observations of various aerosol associated optical and physical phenomena. Although much work has been done on the former by comparison of global climate model predictions/ simulations with instrumental and proxy climate records, the latter has surprisingly not been studied in similar detail. In particular, there is a wealth of observations of vivid red sunsets, blue suns, and other similar features, that can be used to analyze the spatio-temporal dispersal of volcanic aerosols in summer to winter 1883. Thus, aerosol cloud dispersal after the Krakatau eruption can be estimated, bolstered by aerosol cloud behavior as monitored by satellite-based instrument observations after the 1991 Pinatubo eruption. This is one of a handful of large historic eruptions where this analysis can be done (using non-climate proxy methods). In this study, we model particle trajectories of the Krakatau eruption cloud using the Hysplit trajectory model and compare our results with our compiled observational dataset (principally using Verbeek 1884, the Royal Society report, and Kiessling 1884).</p><p>In particular, we explore the effect of different atmospheric states - the quasi-biennial oscillation (QBO) which impacts zonal movement of the stratospheric volcanic plume - to estimate the phase of the QBO in 1883 required for a fast-moving westward cloud. Since this alone is unable to match the observed latitudinal spread of the aerosols, we then explore the impact of an  umbrella cloud (2000 km diameter) that almost certainly formed during such a large eruption. A large umbrella cloud, spreading over ~18 degrees within the duration of the climax of the eruption (6-8 hours), can lead to much quicker latitudinal spread than a point source (vent). We will discuss the results of the combined model (umbrella cloud and correct QBO phase) with historical accounts and observations, as well as previous work on the 1991 Pinatubo eruption. We also consider the likely impacts of water on aerosol concentrations and the relevance of this process for eruptions with possible significant seawater interactions, like Krakatau. We posit that the role of umbrella clouds is an under-appreciated, but significant, process for beginning to model the climatic impacts of large volcanic eruptions.</p>


2021 ◽  
pp. SP519-2020-120
Author(s):  
Alessandra Lotteri ◽  
Janet Speake ◽  
Victoria Kennedy ◽  
Nicolau Wallenstein ◽  
Rui Coutinho ◽  
...  

AbstractFurnas (ca. 1,500 inhabitants) lies within the caldera of Furnas volcano on the island of São Miguel (Azores) and has the potential to expose its inhabitants to multiple hazards (e.g. landslides, earthquakes, volcanic eruptions and degassing). The present population has never experienced a volcanic eruption or a major earthquake, although the catalogue records six eruptions, sub-Plinian in style over the last 2 ka years. Today, the area experiences strong fumarolic activity. In the case of an eruption, early evacuation would be necessary to prevent inhabitants being trapped within the caldera. Awareness of potential threats and knowledge of what to do in the case of an emergency would assist in evacuation. In this paper inhabitants' awareness of volcanic and seismic threats in 2017 is compared with those revealed in a similar study completed more than two decades ago. It is concluded that, whereas awareness of earthquakes and the dangers posed by volcanic gas discharge has increased, knowledge of the threat of volcanic eruptions and the need to prepare for possible evacuation has not. Research suggests that changing awareness is related to effective collaboration that has developed between the regional government, through its civil protection authorities and scientists, and the people of Furnas.


Sign in / Sign up

Export Citation Format

Share Document