scholarly journals The Exploitation of a Hempseed Byproduct to Produce Flavorings and Healthy Food Ingredients by a Fermentation Process

2021 ◽  
Vol 9 (12) ◽  
pp. 2418
Author(s):  
Lorenzo Nissen ◽  
Flavia Casciano ◽  
Elena Babini ◽  
Andrea Gianotti

Following the One Health principles in food science, the challenge to valorize byproducts from the industrial sector is open. Hemp (Cannabis sativa subsp. sativa) is considered an important icon of sustainability and as an alternative food source. Hemp seed bran, in particular, is a byproduct of industrial hemp seed processing, which is not yet valorized. The success, and a wider market diffusion of hemp seed for food applications, is hindered by its unpleasant taste, which is produced by certain compounds that generally overwhelm the pleasant bouquet of the fresh product. This research concerns the exploration of hemp seed bran through fermentation using beneficial lactobacilli, focusing on the sensorial and bioactive traits of the products when they are subjected to bacterial transformation. By studying of the aromatic profile formation during the fermentation process the aim was to modulate it in order to reduce off-odors without affecting the presence of healthy volatile organic compounds (VOCs). Applying multivariate analyses, it was possible to target the contribution of processing parameters to the generation of flavoring and bioactive compounds. To conclude, the fermentation process proposed was able to reduce unpleasant VOCs, whilst at the same time keeping the healthy ones, and it also improved nutritional quality, depending on time and bacterial starters. The fermentation proposed was a sustainable biotechnological approach that fitted perfectly with the valorization of hemp byproducts from the perspective of a green-oriented industrial process that avoids synthetic masking agents.

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1707
Author(s):  
Marcin Andrzej Kurek ◽  
Anubhav Pratap-Singh

Conscious consumers have created a need for constant development of technologies and food ingredients. This study aimed to examine the properties of emulsions and spray-dried microcapsules prepared from hempseed oil by employing a combination of maltodextrin with hemp, pea, and rice protein as carrier materials. Oil content in the microcapsules was varied at two levels: 10 and 20%. Increasing oil load caused a decrease in viscosity of all samples. Consistency index of prepared emulsions was calculated according to Power Law model, with the lowest (9.2 ± 1.3 mPa·s) and highest values (68.3 ± 1.1 mPa·s) for hemp and rice protein, respectively, both at 10% oil loading. The emulsion stability ranged from 68.2 ± 0.7% to 88.1 ± 0.9%. Color characteristics of the microcapsules were defined by high L* values (from 74.65 ± 0.03 to 83.06 ± 0.03) and low a* values (−1.02 ± 0.015 to 0.12 ± 0.005), suggesting that the materials were able to coat the greenish color of the hemp seed oil acceptably. The highest encapsulation efficiency was observed in samples with rice protein, while the lowest was with hemp protein. Combination of maltodextrin and proteins had a preventive effect on the oxidative stability of hempseed oil. Oil release profile fitted well with the Higuchi model, with hempseed oil microencapsulated with pea protein–maltodextrin combination at 10% oil loading depicting lowest oil release rates and best oxidative stability.


2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
H. P. Li

Energy-efficient processing of TiB compound with nanowhiskers by micropyretic synthesis is investigated in this paper. Micropyretic synthesis not only offers shorter processing time but also excludes the requirement for high-temperature sintering and it is considered as the one of the novel energy-saving processing techniques. Experimental study and numerical simulation are both carried out to investigate the correlation of the processing parameters on the microstructures of the micropyretically synthesized products. The diffusion-controlled reaction mechanism is proposed in this study. It is noted that nanosize TiB whiskers only occurred when the combustion temperature is lower than the melting point of TiB but higher than the extinguished temperature. The results generated in the numerical calculation can be used as a helpful reference to select the proper route of processing nanosize materials. The Arrhenius-type plot of size and temperature is used to calculate the activation energy of TiB reaction. In addition to verifying the accuracy of the experimental measures, the reaction temperature for producing the micropyretically synthesized products with nanofeatures can be predicted.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Vibha Devi ◽  
Shabina Khanam

Abstract In the present work, supercritical fluid extraction (SFE) of hemp (Cannabis sativa) seed oil at various ranges of SFE parameters is performed. These parameters and respective ranges are temperature (40–80) °C, pressure (200–350) bar, solvent (CO2) flow rate (5–15) g/min, particle size (0.43–1.02) mm and amount of co-solvent (ethanol) (0–10) % of solvent flow rate. Central composite design (CCD) suggests 32 experimental runs to perform through SFE. The obtained oil is analysed through gas chromatography to identify its fatty acids concentrations. The ratio of ω-6 linoleic and ω-3 α-linolenic fatty acids (ω-6/ω-3) is optimized through CCD to obtain the desired amount of 3:1 as this ratio is highly preferred for various health benefits. Ratio of ω-6/ω-3 is obtained in the range from 2.11 to 3.06:1 for all experimental runs. The effect of SFE parameters on this ratio is investigated. Further, cross-validation is peformed on the experimental data obtained for the concentrations of both fatty acids by jackknife and bootstrap resampling to authenticate the obtained data. Small value of standard deviation (~1), less standard error of the mean (SEM) (<0.8) and less variance coefficient (<0.11) confirms the validity of the obtained data. All the estimators’ values such as standard deviation, variance coefficients and SEM are observed in 95 % of confidence intervals.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 588
Author(s):  
Felipe Leite Coelho da Silva ◽  
Kleyton da Costa ◽  
Paulo Canas Rodrigues ◽  
Rodrigo Salas ◽  
Javier Linkolk López-Gonzales

Forecasting the industry’s electricity consumption is essential for energy planning in a given country or region. Thus, this study aims to apply time-series forecasting models (statistical approach and artificial neural network approach) to the industrial electricity consumption in the Brazilian system. For the statistical approach, the Holt–Winters, SARIMA, Dynamic Linear Model, and TBATS (Trigonometric Box–Cox transform, ARMA errors, Trend, and Seasonal components) models were considered. For the approach of artificial neural networks, the NNAR (neural network autoregression) and MLP (multilayer perceptron) models were considered. The results indicate that the MLP model was the one that obtained the best forecasting performance for the electricity consumption of the Brazilian industry under analysis.


Author(s):  
Paul Grefen ◽  
Irene Vanderfeesten ◽  
Georgios Boultadakis

This chapter describes design and development of the HORSE system for process-oriented hybrid manufacturing that seamlessly integrates human and robotics actors in vertical manufacturing cells that are horizontally coupled in end-to-end manufacturing processes. The HORSE system supports advanced dynamic actor allocation to work cells, direct robot control and human actor instruction, closed-loop local event processing, and near-real-time global event processing. The system handles abstract process definitions and status information on the one hand and directly interfaces to industrial sensors and actuators on the other hand, making it a system with a strong cyber-physical character. The physical side of the system is deployed in an internet-of-things context, where the things are the industrial robots controlled by the HORSE system, the sensors feeding data to the system, and the products being manufactured in the industrial process managed by the system. The system will be deployed in real-world, industrial pilot scenarios in a European Horizon 2020 project.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3853
Author(s):  
Marina P. Arrieta ◽  
Adrián Leonés Gil ◽  
Maysa Yusef ◽  
José M. Kenny ◽  
Laura Peponi

In this work poly(ε-caprolactone) (PCL) based electrospun mats were prepared by blending PCL with microcrystalline cellulose (MCC) and poly(3-hydroxybutyrate) (PHB). The electrospinning processing parameters were firstly optimized with the aim to obtain scalable PCL-based electrospun mats to be used in the industrial sector. Neat PCL as well as PCL-MCC and PCL-PHB based mats in different proportions (99:1; 95:5; 90:10) were prepared. A complete morphological, thermal and mechanical characterization of the developed materials was carried out. Scanning electron microscopy (SEM) observations showed that the addition of PHB to the PCL matrix considerably reduced the formation of beads. Both the addition of MCC and PHB reduced the thermal stability of PCL, but obtained materials with enough thermal stability for the intended use. The electrospun PCL fibers show greatly reduced flexibility with respect to the PCL bulk material, however when PCL is blended with PHB their stretchability is increased, changing their elongation at break from 35% to 70% when 10 wt% of PHB is blended with PCL. However, the mechanical response of the different blends increases with respect to the neat electrospun PCL, offering the possibility to modulate their properties according to the required industrial applications.


2020 ◽  
Vol 21 (9) ◽  
pp. 3067 ◽  
Author(s):  
Vicente Martínez ◽  
Amaia Iriondo De-Hond ◽  
Francesca Borrelli ◽  
Raffaele Capasso ◽  
María Dolores del Castillo ◽  
...  

Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 683 ◽  
Author(s):  
Da-Ham Kim ◽  
Min-Ji Kim ◽  
Dae-Woon Kim ◽  
Gi-Yoon Kim ◽  
Jong-Kuk Kim ◽  
...  

The stem bark of Toxicodendron vernicifluum (TVSB) has been widely used as a traditional herbal medicine and food ingredients in Korea. However, its application has been restricted due to its potential to cause allergies. Moreover, there is limited data available on the qualitative and quantitative changes in the composition of its phytochemicals during fermentation. Although the Formitella fraxinea-mediated fermentation method has been reported as an effective detoxification tool, changes to its bioactive components and the antioxidant activity that takes place during its fermentation process have not yet been fully elucidated. This study aimed to investigate the dynamic changes of urushiols, bioactive compounds, and antioxidant properties during the fermentation of TVSB by mushroom F. fraxinea. The contents of urushiols, total polyphenols, and individual flavonoids (fisetin, fustin, sulfuretin, and butein) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) significantly decreased during the first 10 days of fermentation, with only a slight decrease thereafter until 22 days. Free radical scavenging activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS), and ferric reducing/antioxidant power (FRAP) as an antioxidant function also decreased significantly during the first six to nine days of fermentation followed by a gentle decrease up until 22 days. These findings can be helpful in optimizing the F. fraxinea–mediated fermentation process of TVSB and developing functional foods with reduced allergy using fermented TVSB.


Sign in / Sign up

Export Citation Format

Share Document