scholarly journals Lattice-Preferred Orientation and Seismic Anisotropy of Minerals in Retrograded Eclogites from Xitieshan, Northwestern China, and Implications for Seismic Reflectance of Rocks in the Subduction Zone

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 380
Author(s):  
Jaeseok Lee ◽  
Haemyeong Jung

Various rock phases, including those in subducting slabs, impact seismic anisotropy in subduction zones. The seismic velocity and anisotropy of rocks are strongly affected by the lattice-preferred orientation (LPO) of minerals; this was measured in retrograded eclogites from Xitieshan, northwest China, to understand the seismic velocity, anisotropy, and seismic reflectance of the upper part of the subducting slab. For omphacite, an S-type LPO was observed in three samples. For amphibole, the <001> axes were aligned subparallel to the lineation, and the (010) poles were aligned subnormal to foliation. The LPOs of amphibole and omphacite were similar in most samples. The misorientation angle between amphibole and neighboring omphacite was small, and a lack of intracrystalline deformation features was observed in the amphibole. This indicates that the LPO of amphibole was formed by the topotactic growth of amphibole during retrogression of eclogites. The P-wave anisotropy of amphibole in retrograded eclogites was large (approximately 3.7–7.3%). The seismic properties of retrograded eclogites and amphibole were similar, indicating that the seismic properties of retrograded eclogites are strongly affected by the amphibole LPO. The contact boundary between serpentinized peridotites and retrograded eclogites showed a high reflection coefficient, indicating that a reflected seismic wave can be easily detected at this boundary.

2020 ◽  
Author(s):  
Jungjin Lee ◽  
Haemyeong Jung ◽  
Reiner Klemd ◽  
Matthew Tarling ◽  
Dmitry Konopelko

&lt;p&gt;Strong seismic anisotropy is generally observed in subduction zones. Lattice preferred orientation (LPO) of olivine and elastically anisotropic hydrous minerals has been considered to be an important factor causing anomalous seismic anisotropy. For the first time, we report on measured LPOs of polycrystalline talc. The study comprises subduction-related ultra-high-pressure metamorphic schists from the Makbal Complex in Kyrgyzstan-Kazakhstan and amphibolite-facies metasomatic schists from the Valla Field Block in Unst, Scotland. The here studied talc revealed a strong alignment of [001] axes (sub)normal to the foliation and a girdle distribution of [100] axes and (010) poles (sub)parallel to the foliation. The LPOs of polycrystalline talc produced a significant P&amp;#8211;wave anisotropy (AVp = 72%) and a high S&amp;#8211;wave anisotropy (AVs = 24%). The results imply that the LPO of talc influence both the strong trench-parallel azimuthal anisotropy and positive/negative radial anisotropy of P&amp;#8211;waves, and the trench-parallel seismic anisotropy of S&amp;#8211;waves in subduction zones.&lt;/p&gt;


2020 ◽  
Vol 537 ◽  
pp. 116178 ◽  
Author(s):  
Jungjin Lee ◽  
Haemyeong Jung ◽  
Reiner Klemd ◽  
Matthew S. Tarling ◽  
Dmitry Konopelko

2013 ◽  
Vol 5 (2) ◽  
pp. 963-1005 ◽  
Author(s):  
V. Baptiste ◽  
A. Tommasi

Abstract. We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities with depth. The fastest P wave and fast split shear wave (S1) polarization direction is always close to olivine [100] maximum. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns. Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P waves azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and S waves polarization anisotropy (AVs) between 2.7 and 8%. Seismic properties averaged in 20 km thick intervals depth are, however, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy and SH faster than SV measured using surface waves may only be consistently explained by dipping foliations and lineations. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% of variation Vp, Vs and the Vp/Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp/Vs ratio and density. Orthopyroxene enrichment decreases the density and Vp, but increases Vs, strongly reducing the Vp/Vs ratio. Garnet enrichment increases the density, and in a lesser manner Vp and the Vp/Vs ratio, but it has little to no effect on Vs. These compositionally-induced variations are slightly higher than the velocity perturbations imaged by body-wave tomography, but cannot explain the strong velocity anomalies reported by surface wave studies. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibrium conditions to seismological data in the Kaapvaal highlights that: (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 294
Author(s):  
Seokyoung Han ◽  
Haemyeong Jung

Muscovite is a major constituent mineral in the continental crust that exhibits very strong seismic anisotropy. Muscovite alignment in rocks can significantly affect the magnitude and symmetry of seismic anisotropy. In this study, deformation microstructures of muscovite-quartz phyllites from the Geumseongri Formation in Gunsan, Korea, were studied to investigate the relationship between muscovite and chlorite fabrics in strongly deformed rocks and the seismic anisotropy observed in the continental crust. The [001] axes of muscovite and chlorite were strongly aligned subnormal to the foliation, while the [100] and [010] axes were aligned subparallel to the foliation. The distribution of quartz c-axes indicates activation of the basal<a>, rhomb<a> and prism<a> slip systems. For albite, most samples showed (001) or (010) poles aligned subnormal to the foliation. The calculated seismic anisotropies based on the lattice preferred orientation and modal compositions were in the range of 9.0–21.7% for the P-wave anisotropy and 9.6–24.2% for the maximum S-wave anisotropy. Our results indicate that the modal composition and alignment of muscovite and chlorite significantly affect the magnitude and symmetry of seismic anisotropy. It was found that the coexistence of muscovite and chlorite contributes to seismic anisotropy constructively when their [001] axes are aligned in the same direction.


2020 ◽  
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Christian Berndt ◽  
Alba Zappone ◽  
...  

&lt;p&gt;Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data can help to constrain the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. Differences in the core and downhole velocities are most likely the result of microcracks due to depressurization of the cores. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. To further constrain the effects of mineral composition, microstructure and deformation on the measured seismic anisotropy, we conducted additional microscopic investigations on selected core samples. These analyses using electron-based microscopy and X-ray powder diffractometry indicate that the anisotropy is strongest for mica schists followed by amphibole-rich units. This also emphasizes that seismic velocity and anisotropy are of complementary importance to better distinguish the present lithological units. Our results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere.&lt;/p&gt;


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 503
Author(s):  
Dohyun Kim ◽  
Haemyeong Jung ◽  
Jungjin Lee

Seismic anisotropy of S-wave, trench-parallel or trench-normal polarization direction of fast S-wave, has been observed in the fore-arc and back-arc regions of subduction zones. Lattice preferred orientation (LPO) of elastically anisotropic chlorite has been suggested as one of the major causes of seismic anisotropy in subduction zones. However, there are two different LPOs of chlorite reported based on the previous studies of natural chlorite peridotites, which can produce different expression of seismic anisotropy. The mechanism for causing the two different LPOs of chlorite is not known. Therefore, we conducted deformation experiments of chlorite peridotite under high pressure–temperature conditions (P = 0.5–2.5 GPa, T = 540–720 °C). We found that two different chlorite LPOs were developed depending on the magnitude of shear strain. The type-1 chlorite LPO is characterized by the [001] axes aligned subnormal to the shear plane, and the type-2 chlorite LPO is characterized by a girdle distribution of the [001] axes subnormal to the shear direction. The type-1 chlorite LPO developed under low shear strain (γ ≤ 3.1 ± 0.3), producing trench-parallel seismic anisotropy. The type-2 chlorite LPO developed under high shear strain (γ ≥ 5.1 ± 1.5), producing trench-normal seismic anisotropy. The anisotropy of S-wave velocity (AVs) of chlorite was very strong up to AVs = 48.7% so that anomalous seismic anisotropy in subduction zones can be influenced by the chlorite LPOs.


2020 ◽  
Author(s):  
Junha Kim ◽  
Haemyeong Jung

&lt;p&gt;The lattice preferred orientation(LPO) of amphibole has a large effect on seismic anisotropy in the crust. Previous studies have reported four LPO types (I&amp;#8211;IV) of amphibole, but the genesis of type IV LPO, which is characterized by [100] axes aligned in a girdle subnormal to the shear direction, is unknown. In this study, shear deformation experiments on amphibolite were conducted to find the genesis of type IV LPO at high pressure (0.5 GPa) and temperature (500&amp;#8211;700 &amp;#176;C). The type IV LPO was found under high shear strain (&amp;#947; &gt; 3.0) and the sample exhibited grains in a range of sizes but generally smaller than the grain size of samples with lower shear strain. The seismic anisotropy of type IV LPO is lower than in types I-III. The weak seismic anisotropy of highly deformed amphibole could explain weak seismic anisotropy observed in the middle crust.&lt;/p&gt;


2020 ◽  
Author(s):  
Manuela Durán Oreja ◽  
Jeremie Malecki ◽  
Juan Gómez Barreiro

&lt;p&gt;Two samples of mylonitic-ultramylonitic ortogneisses collected along the Cont&amp;#237;n shear zone were investigated for crystal preferred orientation and seismic anisotropy. Neutron diffraction data obtained at the D1B beamline at ILL (Institute Laue-Langevin, Grenoble) were analyzed with the Rietveld method as implemented in the code MAUD, to obtain the orientation distribution functions (ODF) of the principal phases (quartz, K-feldspar, plagioclase, phlogopite, muscovite and riebeckite). Texture and microstructure are compatible with the plastic deformation of the aggregates under medium to low-temperature conditions. Kinematic analysis supports a top-to-the SE sense of shear, suggesting a thrust character. Using preferred orientation data and single crystal elastic tensors, P and S-waves velocities and elastic anisotropy have been calculated. We have explored the role of several factors controlling the elastic properties of rocks, particularly the role of strain state and mineral changes in a shear zone. Those factors have a direct impact on the medium impedance and consequently on the interphase reflectivity. P-wave velocities, S-wave splitting and anisotropy increase with muscovite content. Seismic anisotropy is linked with the texture symmetry, which can result in large deviations between actual anisotropy and that measured along Cartesian XYZ sample directions (lineation/foliation reference frame). This is significant for the prediction and interpretation of seismic data. (Research support CGL2016-78560-P)&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document