scholarly journals Techno-Economic Analysis of the Reclamation of Drinking Water and Valuable Minerals from Acid Mine Drainage

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1352
Author(s):  
Rhulani Shingwenyana ◽  
Ayanda N. Shabalala ◽  
Ryneth Mbhele ◽  
Vhahangwele Masindi

The concept of circular economy in wastewater treatment has recently attracted immense interest and this is primarily fueled by the ever-growing interest to minimise ecological footprints of mining activities and metallurgical processes. In light of that, countries such as the Republic of South Africa, China, Australia, and the United States are at the forefront of water pollution due to the generation of notorious acid mine drainage (AMD). The disposal of AMD to different receiving environments constitutes a severe threat to the receiving ecosystem thus calling for prudent intervention to redress the prevailing challenges. Recent research emphasises the employment of wastewater treatment, beneficiation and valorisation. Herein, the techno-economic evaluation of the reclamation of clean water and valuable minerals from AMD using the Magnesite Softening and Reverse Osmosis (MASRO) process was reported. The total capital expenditure (CAPEX) for the plant is ZAR 452,000 (USD 31,103.22) which includes ZAR 110,000 (USD 7569.37) for civil works on a plant area of 100 m2. The operational expenditure (OPEX) for the pilot is 16,550,000 ZAR (South African Rand) or USD 1,138,845.72 in present value terms (10 years plant life). The plant reclaimed drinking water as specified in different water quality standards, guidelines, and specifications, including Fe-based minerals (goethite, magnetite, and hematite), Mg-gypsum, and calcium carbonate. These minerals were verified using state-of-the-art analytical equipment. The recovered valuables will be sold at ZAR 368/kL (USD 25.32), ZAR 1100/t (USD 75.69), and ZAR 2000/t (USD 137.62) for water, gypsum, and limestone, respectively. The project has an NPV of ZAR 60,000 (USD 4128.75) at an IRR of 26%. The payback period for this investment will take 3 years. The total power consumption per day was recorded to be 146.6 kWh, and 103,288 kWh/annum. In conclusion, findings of this work will significantly contribute to improving the sustainability of the mining sector by proposing economically feasible solutions for wastewater streams treatment, beneficiation, and valorisation.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Bandana Ghimire ◽  
Thangasamy Saminathan ◽  
Abiodun Bodunrin ◽  
Venkata Lakshmi Abburi ◽  
Arjun Ojha Kshetry ◽  
...  

Acid mine drainage (AMD) is a huge environmental problem in mountain-top mining regions worldwide, including the Appalachian Mountains in the United States. This study applied a genome-wide association study (GWAS) to uncover genomic loci in Arabidopsis associated with tolerance to AMD toxicity. We characterized five major root phenotypes—cumulative root length, average root diameter, root surface area, root volume, and primary root length—in 180 Arabidopsis accessions in response to AMD-supplemented growth medium. GWAS of natural variation in the panel revealed genes associated with tolerance to an acidic environment. Most of these genes were transcription factors, anion/cation transporters, metal transporters, and unknown proteins. Two T-DNA insertion mutants, At1g63005 (miR399b) and At2g05635 (DEAD helicase RAD3), showed enhanced acidity tolerance. Our GWAS and the reverse genetic approach revealed genes involved in conferring tolerance to coal AMD. Our results indicated that proton resistance in hydroponic conditions could be an important index to improve plant growth in acidic soil, at least in acid-sensitive plant species.


2013 ◽  
Vol 295-298 ◽  
pp. 1372-1375 ◽  
Author(s):  
Guang Wei Liu ◽  
Run Cai Bai

The main formation condition and harmfulness of the acidic mining waste water's were analyzed in this paper. The treatment technology of the acid mine drainage's was briefly introduced. The research development of acid mine drainage was summarized in recent years. It was the fact that developing the efficient, cheap, safe and easy treatment technology of acid mine should be necessary and inevitably and some success management experiences of acidic waste water were applied in acidic mining wastewater.


2019 ◽  
pp. 1-10
Author(s):  
Jeffrey G. Skousen ◽  
Paul F. Ziemkiewicz ◽  
Louis M. McDonald

Sign in / Sign up

Export Citation Format

Share Document