scholarly journals Geochemical and Hydrothermal Alteration Patterns of the Abrisham-Rud Porphyry Copper District, Semnan Province, Iran

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Timofey Timkin ◽  
Mahnaz Abedini ◽  
Mansour Ziaii ◽  
Mohammad Reza Ghasemi

In this study, the zonality method has been used to separate geochemical anomalies and to calculate erosional levels in the regional scale for porphyry-Cu deposit, Abrisham-Rud (Semnan province, East of Iran). In geochemical maps of multiplicative haloes, the co-existence of both the supra-ore elements and sub-ore elements local maxima implied blind mineralization in the northwest of the study area. Moreover, considering the calculated zonality indices and two previously presented geochemical models, E and NW of the study have been introduced as ZDM and BM, respectively. For comparison, the geological layer has been created by combining rock units, faults, and alterations utilizing the K-nearest neighbor (KNN) algorithm. The rock units and faults have been identified from the geological map; moreover, alterations have been detected by using remote sensing and ASTER images. In the geological layer map related to E of the study area, many parts have been detected as high potential areas; in addition, both geochemical and geological layer maps only confirmed each other at the south of this area and suggested this part as high potential mineralization. Therefore, high potential areas in the geological layer map could be related to the mineralization or not. Due to the incapability of the geological layer in identifying erosional levels, mineralogy investigation could be used to recognize this level; however, because of the high cost, mineralogy is not recommended for application on a regional scale. The findings demonstrated that the zonality method has successfully distinguished geochemical anomalies including BM and ZDM without dependent on alteration and was able to predict erosional levels. Therefore, this method is more powerful than the geological layer.

Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


2020 ◽  
Vol 17 (1) ◽  
pp. 319-328
Author(s):  
Ade Muchlis Maulana Anwar ◽  
Prihastuti Harsani ◽  
Aries Maesya

Population Data is individual data or aggregate data that is structured as a result of Population Registration and Civil Registration activities. Birth Certificate is a Civil Registration Deed as a result of recording the birth event of a baby whose birth is reported to be registered on the Family Card and given a Population Identification Number (NIK) as a basis for obtaining other community services. From the total number of integrated birth certificate reporting for the 2018 Population Administration Information System (SIAK) totaling 570,637 there were 503,946 reported late and only 66,691 were reported publicly. Clustering is a method used to classify data that is similar to others in one group or similar data to other groups. K-Nearest Neighbor is a method for classifying objects based on learning data that is the closest distance to the test data. k-means is a method used to divide a number of objects into groups based on existing categories by looking at the midpoint. In data mining preprocesses, data is cleaned by filling in the blank data with the most dominating data, and selecting attributes using the information gain method. Based on the k-nearest neighbor method to predict delays in reporting and the k-means method to classify priority areas of service with 10,000 birth certificate data on birth certificates in 2019 that have good enough performance to produce predictions with an accuracy of 74.00% and with K = 2 on k-means produces a index davies bouldin of 1,179.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2015 ◽  
Vol 1 (4) ◽  
pp. 270
Author(s):  
Muhammad Syukri Mustafa ◽  
I. Wayan Simpen

Penelitian ini dimaksudkan untuk melakukan prediksi terhadap kemungkian mahasiswa baru dapat menyelesaikan studi tepat waktu dengan menggunakan analisis data mining untuk menggali tumpukan histori data dengan menggunakan algoritma K-Nearest Neighbor (KNN). Aplikasi yang dihasilkan pada penelitian ini akan menggunakan berbagai atribut yang klasifikasikan dalam suatu data mining antara lain nilai ujian nasional (UN), asal sekolah/ daerah, jenis kelamin, pekerjaan dan penghasilan orang tua, jumlah bersaudara, dan lain-lain sehingga dengan menerapkan analysis KNN dapat dilakukan suatu prediksi berdasarkan kedekatan histori data yang ada dengan data yang baru, apakah mahasiswa tersebut berpeluang untuk menyelesaikan studi tepat waktu atau tidak. Dari hasil pengujian dengan menerapkan algoritma KNN dan menggunakan data sampel alumni tahun wisuda 2004 s.d. 2010 untuk kasus lama dan data alumni tahun wisuda 2011 untuk kasus baru diperoleh tingkat akurasi sebesar 83,36%.This research is intended to predict the possibility of new students time to complete studies using data mining analysis to explore the history stack data using K-Nearest Neighbor algorithm (KNN). Applications generated in this study will use a variety of attributes in a data mining classified among other Ujian Nasional scores (UN), the origin of the school / area, gender, occupation and income of parents, number of siblings, and others that by applying the analysis KNN can do a prediction based on historical proximity of existing data with new data, whether the student is likely to complete the study on time or not. From the test results by applying the KNN algorithm and uses sample data alumnus graduation year 2004 s.d 2010 for the case of a long and alumni data graduation year 2011 for new cases obtained accuracy rate of 83.36%.


2020 ◽  
Vol 8 (1) ◽  
pp. 121
Author(s):  
Sukamto Sukamto ◽  
Yanti Adriyani ◽  
Rizka Aulia

2015 ◽  
pp. 125-138 ◽  
Author(s):  
I. V. Goncharenko

In this article we proposed a new method of non-hierarchical cluster analysis using k-nearest-neighbor graph and discussed it with respect to vegetation classification. The method of k-nearest neighbor (k-NN) classification was originally developed in 1951 (Fix, Hodges, 1951). Later a term “k-NN graph” and a few algorithms of k-NN clustering appeared (Cover, Hart, 1967; Brito et al., 1997). In biology k-NN is used in analysis of protein structures and genome sequences. Most of k-NN clustering algorithms build «excessive» graph firstly, so called hypergraph, and then truncate it to subgraphs, just partitioning and coarsening hypergraph. We developed other strategy, the “upward” clustering in forming (assembling consequentially) one cluster after the other. Until today graph-based cluster analysis has not been considered concerning classification of vegetation datasets.


2018 ◽  
Author(s):  
I Wayan Agus Surya Darma

Balinese character recognition is a technique to recognize feature or pattern of Balinese character. Feature of Balinese character is generated through feature extraction process. This research using handwritten Balinese character. Feature extraction is a process to obtain the feature of character. In this research, feature extraction process generated semantic and direction feature of handwritten Balinese character. Recognition is using K-Nearest Neighbor algorithm to recognize 81 handwritten Balinese character. The feature of Balinese character images tester are compared with reference features. Result of the recognition system with K=3 and reference=10 is achieved a success rate of 97,53%.


Sign in / Sign up

Export Citation Format

Share Document