scholarly journals Simulation of Colloidal Stability and Aggregation Tendency of Magnetic Nanoflowers in Biofluids

Modelling ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 14-26
Author(s):  
Panagiotis Neofytou ◽  
Maria Theodosiou ◽  
Marios G. Krokidis ◽  
Eleni K. Efthimiadou

A population balance model for the aggregation of iron oxide nanoflowers (IONfs) is presented. The model is based on the fixed pivot technique and is validated successfully for four kinds of aggregation kernels. The extended Derjaguin, Landau, Verwey, and Overbeek (xDLVO) theory is also employed for assessing the collision efficiency of the particles, which is pertinent to the total energy of the interaction. Colloidal stability experiments were conducted on IONfs for two dispersant cases—aqueous phosphate buffered saline solution (PBS) and simulated body fluid (SBF). Dynamic light scattering (DLS) measurements after 24-h of incubation show a significant size increase in plain PBS, whereas the presence of proteins in SBF prevents aggregation by protein corona formation on the IONfs. Subsequent simulations tend to overpredict the aggregation rate, and this can be attributed to the flower-like shape of IONfs, thus allowing patchiness on the surface of the particles that promotes an uneven energy potential and aggregation hindering. In silico parametric study on the effects of the ionic strength shows a prominent dependency of the aggregation rate on the salinity of the dispersant underlying the effect of repulsion forces, which are almost absent in the PBS case, promoting aggregation. In addition, the parametric study on the van der Waals potential energy effect—within common Hamaker-constant values for iron oxides—shows that this is almost absent for high salinity dispersants, whereas low salinity gives a wide range of results, thus underlying the high sensitivity of the model on the potential energy parameters.

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Shahrooz Rahmati ◽  
William Doherty ◽  
Arman Amani Babadi ◽  
Muhamad Syamim Akmal Che Mansor ◽  
Nurhidayatullaili Muhd Julkapli ◽  
...  

The environmental crisis, due to the rapid growth of the world population and globalisation, is a serious concern of this century. Nanoscience and nanotechnology play an important role in addressing a wide range of environmental issues with innovative and successful solutions. Identification and control of emerging chemical contaminants have received substantial interest in recent years. As a result, there is a need for reliable and rapid analytical tools capable of performing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample handling for the detection, degradation, and removal of hazardous contaminants. In this review, various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring of environmental pollutants are investigated comparatively.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1537
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


1979 ◽  
Vol 47 (6) ◽  
pp. 1228-1233 ◽  
Author(s):  
D. S. Simon ◽  
J. F. Murray ◽  
N. C. Staub

We evaluated the attenuation of the 122 keV gamma ray of cobalt-57 across the thorax of anesthetized dogs as a method for following the time course of lung water changes in acute pulmonary edema induced by either increased microvascular permeability or increased microvascular hydrostatic pressure. The gamma rays traversed the thorax centered on the seventh rib laterally where the lung mass in the beam path was greatest. Calibration measurements in isolated lung lobes demonstrated the high sensitivity and inherent accuracy of the method over a wide range of lung water contents. In control dogs reproducibility averaged +/-3%. Increased permeability edema led to large rapid increases in the transthoracic gamma ray attenuation (TGA), while increased pressure caused an immediate, modest increase in TGA (vascular congestion) followed by a slow further increase over 2 h. There was a fairly good correlation between the increase in extravascular lung water and the change in TGA. The method is simple, safe, and noninvasive and appears to be useful for following the time course of lung water accumulation in generalized lung edema in anesthetized animals.


2001 ◽  
Vol 19 (4) ◽  
pp. 579-595 ◽  
Author(s):  
D. MOSHER ◽  
B.V. WEBER ◽  
B. MOOSMAN ◽  
R.J. COMMISSO ◽  
P. COLEMAN ◽  
...  

High-sensitivity interferometry measurements of initial density distributions are reviewed for a wide range of gas-puff nozzles used in plasma radiation source (PRS) z-pinch experiments. Accurate gas distributions are required for determining experimental load parameters, modeling implosion dynamics, understanding the radiation properties of the stagnated pinch, and for predicting PRS performance in future experiments. For a number of these nozzles, a simple ballistic-gas-flow model (BFM) has been used to provide good physics-based analytic fits to the measured r, z density distributions. These BFM fits provide a convenient means to smoothly interpolate radial density distributions between discrete axial measurement locations for finer-zoned two-dimensional MHD calculations, and can be used to determine how changes in nozzle parameters and load geometry might alter implosion dynamics and radiation performance. These measurement and analysis techniques are demonstrated for a nested-shell nozzle used in Double Eagle and Saturn experiments. For this nozzle, the analysis suggests load modifications that may increase the K-shell yield.


2007 ◽  
Vol 55 (11) ◽  
pp. 93-101 ◽  
Author(s):  
M.A. Babu ◽  
M.M. Mushi ◽  
N.P. van der Steen ◽  
C.M. Hooijmans ◽  
H.J. Gijzen

Nitrogen removal in wastewater stabilization ponds is poorly understood and effluent monitoring data show a wide range of differences in ammonium. For effluent discharge into the environment, low levels of nitrogen are recommended. Nitrification is limiting in facultative wastewater stabilization ponds. The reason why nitrification is considered to be limiting is attributed to low growth rate and wash out of the nitrifiers. Therefore to maintain a population, attached growth is required. The aim of this research is to study the relative contribution of bulk water and biofilms with respect to nitrification. The hypothesis is that nitrification can be enhanced in stabilization ponds by increasing the surface area for nitrifier attachment. In order to achieve this, transparent pond reactors representing water columns in algae WSP have been used. To discriminate between bulk and biofilm activity, 5-day batch activity tests were carried out with bulk water and biofilm sampled. The observed value for Rnitrbulk was 2.7 × 10−1 mg-N L−1 d−1 and for Rbiofilm was 1,495 mg-N m−2 d −1. During the 5 days of experiment with the biofilm, ammonia reduction was rapid on the first day. Therefore, a short-term biofilm activity test was performed to confirm this rapid decrease. Results revealed a nitrification rate, Rbiofilm, of 2,125 mg-N m−2 d−1 for the first 5 hours of the test, which is higher than the 1,495 mg-N m−2 d−1, observed on the first day of the 7-day biofilm activity test. Rbiofilm and Rnitrbulk values obtained in the batch activity tests were used as parameters in a mass balance model equation. The model was calibrated by adjusting the fraction of the pond volume and biofilm area that is active (i.e. aerobic). When assuming a depth of 0.08 m active upper layer, the model could describe well the measured effluent values for the pond reactors. The calibrated model was validated by predicting effluent Kjeldahl nitrogen of algae ponds in Palestine and Colombia. The model equation predicted well the effluent concentrations of ponds in Palestine.


2011 ◽  
Vol 63 (8) ◽  
pp. 1765-1771 ◽  
Author(s):  
S. Heubeck ◽  
R. M. de Vos ◽  
R. Craggs

The biological treatment of wastewater could yield high energy fuels such as methane and alcohols, however most conventional treatment systems do not recover this energy potential. With a simple model of the energy yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly energy intensive, to being recognised as a source of energy resources. The future potential energy yield is estimated by applying energy yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the energy potential of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of energy from wastewater, the potential energy yield from this sector would be substantially increased (six fold for New Zealand).


2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


2018 ◽  
Author(s):  
Fabien Maussion ◽  
Anton Butenko ◽  
Julia Eis ◽  
Kévin Fourteau ◽  
Alexander H. Jarosch ◽  
...  

Abstract. Despite of their importance for sea-level rise, seasonal water availability, and as source of geohazards, mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Here we present the Open Global Glacier Model (OGGM, http://www.oggm.org), developed to provide a modular and open source numerical model framework for simulating past and future change of any glacier in the world. The modelling chain comprises data downloading tools (glacier outlines, topography, climate, validation data), a preprocessing module, a mass-balance model, a distributed ice thickness estimation model, and an ice flow model. The monthly mass-balance is obtained from gridded climate data and a temperature index melt model. To our knowledge, OGGM is the first global model explicitly simulating glacier dynamics: the model relies on the shallow ice approximation to compute the depth-integrated flux of ice along multiple connected flowlines. In this paper, we describe and illustrate each processing step by applying the model to a selection of glaciers before running global simulations under idealized climate forcings. Even without an in-depth calibration, the model shows a very realistic behaviour. We are able to reproduce earlier estimates of global glacier volume by varying the ice dynamical parameters within a range of plausible values. At the same time, the increased complexity of OGGM compared to other prevalent global glacier models comes at a reasonable computational cost: several dozens of glaciers can be simulated on a personal computer, while global simulations realized in a supercomputing environment take up to a few hours per century. Thanks to the modular framework, modules of various complexity can be added to the codebase, allowing to run new kinds of model intercomparisons in a controlled environment. Future developments will add new physical processes to the model as well as tools to calibrate the model in a more comprehensive way. OGGM spans a wide range of applications, from ice-climate interaction studies at millenial time scales to estimates of the contribution of glaciers to past and future sea-level change. It has the potential to become a self-sustained, community driven model for global and regional glacier evolution.


Sign in / Sign up

Export Citation Format

Share Document