scholarly journals Biochemical and Functional Characterization of Anthocyanidin Reductase (ANR) from Mangifera indica L.

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2876 ◽  
Author(s):  
Lin Tan ◽  
Mei Wang ◽  
Youfa Kang ◽  
Farrukh Azeem ◽  
Zhaoxi Zhou ◽  
...  

Mango (Mangifera indica L.) is abundant in proanthocyanidins (PAs) that are important for human health and plant response to abiotic stresses. However, the molecular mechanisms involved in PA biosynthesis still need to be elucidated. Anthocyanidin reductase (ANR) catalyzes a key step in PA biosynthesis. In this study, three ANR cDNAs (MiANR1-1,1-2,1-3) were isolated from mango, and expressed in Escherichia coli. In vitro enzyme assay showed MiANR proteins convert cyanidin to their corresponding flavan-3-ols, such as (−)-catechin and (−)-epicatechin. Despite high amino acid similarity, the recombinant ANR proteins exhibited differences in enzyme kinetics and cosubstrate preference. MiANR1-2 and MiANR1-3 have the same optimum pH of 4.0 in citrate buffer, while the optimum pH for MiANR1-1 is pH 3.0 in phosphate buffer. MiANR1-1 does not use either NADPH or NADH as co-substrate while MiANR1-2/1-3 use only NADPH as co-substrate. MiANR1-2 has the highest Km and Vmax for cyanidin, followed by MiANR1-3 and MiANR1-1. The overexpression of MiANRs in ban mutant reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate MiANRs can form the ANR pathway, leading to the formation of two types of isomeric flavan-3-ols and PAs in mango.

2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Yvan Caspar ◽  
Claire Siebert ◽  
Vivien Sutera ◽  
Corinne Villers ◽  
Alexandra Aubry ◽  
...  

ABSTRACT Fluoroquinolone (FQ) resistance is a major health concern in the treatment of tularemia. Because DNA gyrase has been described as the main target of these compounds, our aim was to clarify the contributions of both GyrA and GyrB mutations found in Francisella novicida clones highly resistant to FQs. Wild-type and mutated GyrA and GyrB subunits were overexpressed so that the in vitro FQ sensitivity of functional reconstituted complexes could be evaluated. The data obtained were compared to the MICs of FQs against bacterial clones harboring the same mutations and were further validated through complementation experiments and structural modeling. Whole-genome sequencing of highly FQ-resistant lineages was also done. Supercoiling and DNA cleavage assays demonstrated that GyrA D87 is a hot spot FQ resistance target in F. novicida and pointed out the role of the GyrA P43H substitution in resistance acquisition. An unusual feature of FQ resistance acquisition in F. novicida is that the first-step mutation occurs in GyrB, with direct or indirect consequences for FQ sensitivity. Insertion of P466 into GyrB leads to a 50% inhibitory concentration (IC50) comparable to that observed for a mutant gyrase carrying the GyrA D87Y substitution, while the D487E-ΔK488 mutation, while not active on its own, contributes to the high level of resistance that occurs following acquisition of the GyrA D87G substitution in double GyrA/GyrB mutants. The involvement of other putative targets is discussed, including that of a ParE mutation that was found to arise in the very late stage of antibiotic exposure. This study provides the first characterization of the molecular mechanisms responsible for FQ resistance in Francisella.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii417-iii418
Author(s):  
Ming Yuan ◽  
Karlyne Reilly ◽  
Christine Pratilas ◽  
Christopher Heaphy ◽  
Fausto Rodriguez

Abstract To identify the biologic relevance of ATRX loss in NF1-associated gliomagenesis, we studied the effects of Atrx loss using four previously characterized Nf1+/-Trp53+/- murine glioma lines. Lines 130G#3 and 158D#8 (corresponding to grade IV and III gliomas, respectively) displayed preserved ATRX protein expression compared to NIH-3T3 cells. We studied the effects of Atrx knockdown in these two lines in the presence and absence of the TERT inhibitor, BIRBR1532. Using a telomere-specific FISH assay, we identified increased signal intensity after Atrx knockdown, only in the presence of the TERT inhibitor. These features are reminiscent of ALT, although there were no significant alterations in cell growth. Next, we studied the effect of ATRX loss in MPNST lines ST88-14, NF90-8, STS-26T. These cell lines all expressed ATRX and DAXX. However, STS-26T contained a TERT promoter mutation and ST88-14 had a known SNP in the TERT promoter, while NF90-8 had no alterations. ATRX siRNA knockdown showed no significant effects in cell proliferation or apoptosis. However, ATRX knockdown resulted in rare ultra-bright foci, indicative of ALT. Next, we studied the in vitro effect of the ATR inhibitor VE-821 in MPNST cell lines. Only NF90-8 (lacking TERT alterations) demonstrated a decrease in growth after ATRX knockdown and VE-821 treatment. However, ATRX knockdown alone did not affect sensitivity to carboplatin. Our findings further support a role for ATRX loss with subsequent ALT activation in a biologic subset of NF1-associated malignancies, thereby opening an opportunity for therapeutic targeting of these aggressive tumors using specific classes of drugs.


2004 ◽  
pp. 85-94
Author(s):  
Bjarke Ebert ◽  
Sally Anne Thompson ◽  
Signe Í. Stórustovu ◽  
Keith A. Wafford

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Travis J. Wiles ◽  
Elena S. Wall ◽  
Brandon H. Schlomann ◽  
Edouard A. Hay ◽  
Raghuveer Parthasarathy ◽  
...  

ABSTRACTCorrelating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis andin vitroassays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.IMPORTANCEA great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Stanislav Huszár ◽  
Vinayak Singh ◽  
Alica Polčicová ◽  
Peter Baráth ◽  
María Belén Barrio ◽  
...  

ABSTRACT The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


2021 ◽  
Author(s):  
Jimmy D Gollihar ◽  
Jason S McLellan ◽  
Daniel R Boutz ◽  
Jule Goike ◽  
Andrew Horton ◽  
...  

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform. Antibodies were identified from unpaired donor B-cell and serum repertoires using yeast surface display, proteomics, and public light chain screening. Cryo-EM and functional characterization of the antibodies identified N3-1, an antibody that binds avidly (Kd,app = 68 pM) to the receptor binding domain (RBD) of the spike protein and robustly neutralizes the virus in vitro. This antibody likely binds all three RBDs of the trimeric spike protein with a single IgG. Importantly, N3-1 equivalently binds spike proteins from emerging SARS-CoV-2 variants of concern, neutralizes UK variant B.1.1.7, and binds SARS-CoV spike with nanomolar affinity. Taken together, the strategies described herein will prove broadly applicable in interrogating adaptive immunity and developing rapid response biological countermeasures to emerging pathogens.


2021 ◽  
Author(s):  
Hyuk Nam Kwon ◽  
Kristen Kurtzeborn ◽  
Xing Jin ◽  
Bruno Reversade ◽  
Sunghyouk Park ◽  
...  

Nephron endowment is defined by fetal kidney growth and it critically dictates renal health in adults. Despite the advances in understanding the molecular regulation of nephron progenitor maintenance, propagation, and differentiation, the causes for low congenital nephron count and contribution of basic metabolism to nephron progenitor regulation remain poorly studied. Here we have analyzed the metabolic effects that depend on and are triggered by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which is an essential intracellular cascade required for nephron progenitor maintenance. Our combined approach utilizing LC/MS-based metabolomics and transcriptional profiling of MAPK/ERK-deficient cells identified 18 out of total 46 metabolites (38 untargeted and 8 targeted) that were down-regulated. These represent glycolysis, gluconeogenesis, pentose phosphate, glycine, and proline pathways among others. We focused our functional characterization of identified metabolites on pyruvate and proline. Use of in vitro kidney cultures revealed dosage-specific functions for pyruvate in not only controlling ureteric bud branching but also determining progenitor and differentiated (tip-trunk) cell identities. Our in vivo characterization of Pycr1/2 double knockout kidneys revealed functional requirement for proline metabolism in nephron progenitor maintenance. In summary, our results demonstrate that MAPK/ERK cascade regulates energy and amino acid metabolism in developing kidney where these metabolic pathways specifically regulate progenitor preservation.


Sign in / Sign up

Export Citation Format

Share Document