scholarly journals High-Quality Biodiesel Production from Buriti (Mauritia flexuosa) Oil Soapstock

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 94 ◽  
Author(s):  
Samantha Pantoja ◽  
Vanessa Mescouto ◽  
Carlos Costa ◽  
José Zamian ◽  
Geraldo Rocha Filho ◽  
...  

The buriti palm (Mauritia flexuosa) is a palm tree widely distributed throughout tropical South America. The oil extracted from the fruits of this palm tree is rich in natural antioxidants. The by-products obtained from the buriti palm have social and economic importance as well, hence the interest in adding value to the residue left from refining this oil to obtain biofuel. The process of methyl esters production from the buriti oil soapstock was optimized considering acidulation and esterification. The effect of the molar ratio of sulfuric acid (H2SO4) to soapstock in the range from 0.6 to 1.0 and the reaction time (30–90 min) were analyzed. The best conditions for acidulation were molar ratio 0.8 and reaction time of 60 min. Next, the esterification of the fatty acids obtained was performed using methanol and H2SO4 as catalyst. The effects of the molar ratio (9:1–27:1), percentage of catalyst (2–6%) and reaction time (1–14 h) were investigated. The best reaction conditions were: 18:1 molar ratio, 4% catalyst and 14 h reaction time, which resulted in a yield of 92% and a conversion of 99.9%. All the key biodiesel physicochemical characterizations were within the parameters established by the Brazilian standard. The biodiesel obtained presented high ester content (96.6%) and oxidative stability (16.1 h).

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-10 ◽  
Author(s):  
O. S. Aliozo ◽  
L. N. Emembolu ◽  
O. D. Onukwuli

Abstract In this research work, melon oil was used as feedstock for methyl ester production. The research was aimed at optimizing the reaction conditions for methyl ester yield from the oil. Response surface methodology (RSM), based on a five level, four variable central composite designs (CCD)was used to optimize and statistically analyze the interaction effect of the process parameter during the biodiesel production processes. A total of 30 experiments were conducted to study the effect of methanol to oil molar ratio, catalyst weight, temperature and reaction time. The optimal yield of biodiesel from melon oil was found to be 94.9% under the following reaction conditions: catalyst weight - 0.8%, methanol to oil molar ratio - 6:1, temperature - 55°C and reaction time of 60mins. The quality of methyl ester produced at these conditions was within the American Society for Testing and Materials (ASTM D6751) specification.


2014 ◽  
Vol 25 (2) ◽  
pp. 39-47 ◽  
Author(s):  
Andrew C. Eloka-Eboka ◽  
Ogbene Gillian Igbum ◽  
Freddie L. Inambao

Optimization of the production process in biodiesel production holds huge prospects. A reduced cost option is the optimization of process variables that affect yields and purity of biodiesel, which was achieved in this study. Optimized production and direct effects of process variables on the production and quality of methyl ester biodiesel fuels from the non-edible seed oils of sandbox seed was carried out. Catalyst nature and concentration, alcohol to triglyceride molar ratio, mixing speed, reaction time and temperature were taken into consideration as variables to their individual response on the yields, viscosity and specific gravity of the methyl esters produced. These are specific indispensable properties of biodiesel for use in compression ignition engines. Optimized concentrations were 0.3 to 1.5% w/v and two mole ratios of 3:1 and 6:1. Time of reaction was varied (5mins to 30mins) with temperatures (38oC and 55oC). Also, the effect of methanol in the range of 4:1and 6:1 (molar ratio) was investigated, keeping catalyst type, reaction time and temperatures constant. The effects of KOH and NaOH on the transesterification were investigated with concentration kept constant at 1%. The general response in this study was that at optimized rate of agitation (800rpm), optimized reaction time was as low as 5minutes, 1% catalyst concentration of NaOH was the optimal concentration, and 55oC was the optimal temperature with attendant high yields. However, there are variations with the nature of feedstock as the work further exposed. These high points are particularly of interest to guide against process backdrop.


Author(s):  
I Nengah Simpen ◽  
I Made Sutha Negara ◽  
Sofyan Dwi Jayanto

Biodiesel production from waste cooking oil in two steps reaction of esterification and transesterification is low efficient, due to twice methanol consumption and need more reaction time. Optimizing reaction conditions of CaO as a matrix of solid catalyst prepared from crab shell (green CaO) and modified by K2O/TiO2 for converting waste cooking oil to biodiesel have been carried out. Catalytic process of waste cooking oil to biodiesel took place in one step reaction of esterification and transesterification. The research result showed that optimum conditions in its one step reaction such as methanol to oil molar ratio was 9:1, amount of CaO/K2O-TiO2 catalyst to oil was 5% and reaction time of 60 minutes with biodiesel yield was 88.24%. Physical and chemical properties of biodiesel which produced from one step reaction of esterification and transesterification of waste cooking oil were suitable with Indonesian National Standard (SNI-04-7182-2006) namely density at 40oC of 850 kg/m3, kinematic viscosity at 40oC of 3.32 cSt, water content of 0.046%, iodine number of 59.25 g I2/100g and acid value of 0.29 mg KOH/g. Gas chromatography-mass spectrometry (GC-MS) analysis of biodiesel formed fatty acid methyl esters from conversion of waste cooking oil.


2019 ◽  
Vol 41 (3) ◽  
pp. 458-458
Author(s):  
Tahir Mehmood Tahir Mehmood ◽  
Adeela Naseem Adeela Naseem ◽  
Farooq Anwar Farooq Anwar ◽  
Mudassir Iqbal and Muhammad Ashraf Shaheen Mudassir Iqbal and Muhammad Ashraf Shaheen

Response Surface Methodology (RSM) was applied based on central composite rotatable design (CCRD) to optimize transesterification reaction parameters for obtaining optimal biodiesel yield from Jatropha curcas oil. Transesterification variables such as: catalyst concentration (CC) (0.16-2%), reaction temperature (RT) (40-65and#176;C), molar ratio of oil and methanol (0.95-11.5), and reaction time (30-140 min) were optimized via RSM involving 24 full factorial CCRD design. The molar ratio of methanol to oil and RT were the most significant (pandlt; 0.5) factors affecting the yield of Jatropha curcas oil methyl esters (JOMEs). A linear relationship was recorded between the observed and predicted values (R2 = 0.766). Using multiple regression analysis, a quadratic polynomial equation was constructed to predict JOMEs yield. The quadratic term of molar ratio showed a significant impact on the JOMEs yield. The interaction terms of molar ratio and CC with reaction time exhibited positive impact on ester yield (pandlt; 0.05). The optimum reaction conditions including CH3OH to oil ratio of 6:1, 1.0 % CC, 60 and#176;C RT and 60 min reaction time offered the highest yield of JOMEs (99.90%). JOMEs were analytically characterized using GLC and FTIR. The fuel properties of produced JOMEs were in accordance to ASTM D6751 and EN 14214 standards.


2021 ◽  
Author(s):  
Vaishali Mittal ◽  
Uttam Kumar Ghosh

Abstract Production of biodiesel from microalgae is gaining popularity since it does not compromise food security or the global economy. This article reports biodiesel production with Spirulina microalgae through nanocatalytic transesterification process. The nanocatalyst calcium methoxide Ca(OCH3)2 was synthesized using wet impregnation method and utilized to carry out the transesterification process. The nanocatalyst was characterized to evaluate its structural and spectral characteristics using different characterization techniques such as Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunaeur-Emmett-Teller(BET) measurement for surface area. The result demonstrates that calcium methoxide Ca(OCH3)2 possesses a high catalytic activity compared to a heterogeneous catalyst such as calcium oxide (CaO). The impact of several process parameters such as reaction temperature, the molar ratio of methanol to oil, catalyst concentration, and reaction time used in the transesterification process was optimized by employing central composite design(CCD) based response surface methodology(RSM). The polynomial regression equation of second order was obtained for methyl esters. The model projected a 99% fatty acid methyl esters (FAME) yield for optimal process parameters of reaction time 3hrs,3 wt.% of Ca(OCH3)2 catalyst loading, 80°C reaction temperature, and 30:1 methanol to oil molar ratio.


2013 ◽  
Vol 15 (1) ◽  
pp. 74-77 ◽  
Author(s):  
Faizan Ullah ◽  
Asghari Bano ◽  
Saqib Ali

Attempts were made to optimize variables affecting the yield of linseed oil biodiesel in a base catalyzed transesterification reaction. The variables studied were reaction temperature (40-70oC), catalyst (NaOH) concentration (0.1-1.5%) and reaction time (30-180 min). The conversion of linseed oil into methyl esters was confirmed through analytical methods like 1H NMR, gas chromatography (GC) and refractometer. The maximum biodiesel yield (97±1.045% w/w) was obtained at 0.5% catalyst concentration, 65oC temperature, 180 min reaction time and 6:1 molar ratio of methanol to oil. 1H NMR confirmed the practically obtained % conversion of triglycerides into methyl esters which was further evidenced by refractometer analyses. The refractive index of biodiesel samples was lower than pure linseed oil. GC analysis confirmed the presence of linolenic acid (C18:3) as the dominant fatty acid (68 wt. %) followed by oleic acid (C18:1), linoleic acid (C18:2) and stearic acid (C18:0) respectively. The physical properties of linseed oil biodiesel like specific gravity (0.90 g/cm3) and flash point (177oC) were higher than American Society for Testing and Materials standards (ASTM 6751) for biodiesel. However, kinematic viscosity (3.752 mm2/s) was in the range of ASTM standards.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2656 ◽  
Author(s):  
Sara Almasi ◽  
Barat Ghobadian ◽  
Gholam Hassan Najafi ◽  
Talal Yusaf ◽  
Masoud Dehghani Soufi ◽  
...  

In recent years, due to the favorable climate conditions of Iran, the cultivation of rapeseed has increased significantly. The aim of this study was to investigate the possibility of biodiesel production from one genotype of rapeseed (TERI (OE) R-983). An ultrasonic approach was used in order to intensify the reaction. Response surface methodology (RSM) was applied to identify the optimum conditions of the process. The results of this research showed that the conversion of biodiesel was found to be 87.175% under the optimized conditions of a 4.63:1 molar ratio (methanol to oil), 56.50% amplitude, and 0.4 s pulses for a reaction time of 5.22 min. Increasing the operating conditions, such as the molar ratio from 4:1 to 5.5:1, amplitude from 50% to 72.5%, reaction time from 3 min to 7 min, and pulse from 0.4 s to 1 s, increased the FAME (fatty acid methyl esters) yield by approximately 4.5%, 2.3%, 1.2%, and 0.5%, respectively. The properties of the TERI (OE) R-983 methyl ester met the requirements of the biodiesel standard (ASTM D6751), indicating the potential of the produced biodiesel as an alternative fuel.


2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Adeeb Hayyan ◽  
Farouq Mjalli ◽  
Mohamed Mirghani ◽  
Mohd Hashim ◽  
Maan Hayyan ◽  
...  

AbstractAcidic crude palm oil (ACPO) produced from palm oil mills with an acid value of 18 mg g−1 was considered to be a possible feedstock for biodiesel production. Due to its high acidity, conventional transesterification cannot be applied directly for biodiesel production. Methane sulphonic acid (MSA, CH3SO3H) is used to reduce the acidity prior to the alkaline transesterification reaction. The laboratory-scale experiments involved an MSA to ACPO dosage of 0.25–3.5 %, a molar ratio (methanol to ACPO) from 4: 1 to 20: 1, reaction temperature of 40–80°C, reaction time of 3–150 min, and stirrer speed of 100–500 min−1. The optimum esterification reaction conditions were 1 % of catalyst to ACPO, with a molar ratio of methanol to ACPO of 8: 1, a stirring speed of 300 min−1, for 30 min and at 60°C. Under these conditions, the FFA content was reduced from 18 mg g−1 to less than 1 mg g−1 and with a yield of 96 %. The biodiesel produced met the EN14214 standard specifications. MSA was recycled for three times without losing its activity. The biodiesel produced in a two-stage process has a low acid value (0.14 mg g−1).


Author(s):  
Intan Shafinaz Abd Manaf ◽  
Mohd Hasbi Ab. Rahim ◽  
Gaanty Pragas Maniam

This paper reports studies in ultrasound-assisted heterogeneous solid catalyzed (CaO) synthesis of biodiesel from catfish (Pangasius) fat. Ultrasonication provides a faster chemical reaction, and the rate enhancements, refereed by cavitation that causes the building- up of pressures and temperatures, as well as increased catalytic surface areas and improve mass transfer. This novel method offers significant advantages such as shorter reaction time and less energy consumption than the conventional method, efficient molar ratio of methanol to triglycerides and provides the mechanical energy for mixing. The required activation energy for initiating the transesterification reaction and so, it gives a higher yield by transesterification of oils into biodiesel. The optimized reaction conditions were as follows: methanol to oil molar ratio of 15:1; catalyst (B-CaO), 9 wt. %; reaction temperature, 65 ± 2 °C; reaction time, 1 h at a working frequency of 42 kHz and the power supply of 100W. Highest conversion of 96.4 wt. % was achieved.


Sign in / Sign up

Export Citation Format

Share Document