scholarly journals ENPP1, an Old Enzyme with New Functions, and Small Molecule Inhibitors—A STING in the Tale of ENPP1

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4192 ◽  
Author(s):  
Kenneth I. Onyedibe ◽  
Modi Wang ◽  
Herman O. Sintim

Ectonucleotide pyrophosphatase/phosphodiesterase I (ENPP1) was identified several decades ago as a type II transmembrane glycoprotein with nucleotide pyrophosphatase and phosphodiesterase enzymatic activities, critical for purinergic signaling. Recently, ENPP1 has emerged as a critical phosphodiesterase that degrades the stimulator of interferon genes (STING) ligand, cyclic GMP–AMP (cGAMP). cGAMP or analogs thereof have emerged as potent immunostimulatory agents, which have potential applications in immunotherapy. This emerging role of ENPP1 has placed this “old” enzyme at the frontier of immunotherapy. This review highlights the roles played by ENPP1, the mechanism of cGAMP hydrolysis by ENPP1, and small molecule inhibitors of ENPP1 with potential applications in diverse disease states, including cancer.

Amino Acids ◽  
2021 ◽  
Author(s):  
James M. Phang

AbstractIn the 35 years since the introduction of the “proline cycle”, its relevance to human tumors has been widely established. These connections are based on a variety of mechanisms discovered by many laboratories and have stimulated the search for small molecule inhibitors to treat cancer or metastases. In addition, the multi-layered connections of the proline cycle and the role of proline and hydroxyproline in collagen provide an important regulatory link between the extracellular matrix and metabolism.


2004 ◽  
Vol 78 (10) ◽  
pp. 5258-5269 ◽  
Author(s):  
Subrata Barman ◽  
Lopa Adhikary ◽  
Alok K. Chakrabarti ◽  
Carl Bernas ◽  
Yoshihiro Kawaoka ◽  
...  

ABSTRACT Influenza virus neuraminidase (NA), a type II transmembrane glycoprotein, possesses receptor-destroying activity and thereby facilitates virus release from the cell surface. Among the influenza A viruses, both the cytoplasmic tail (CT) and transmembrane domain (TMD) amino acid sequences of NA are highly conserved, yet their function(s) in virus biology remains unknown. To investigate the role of amino acid sequences of the CT and TMD on the virus life cycle, we systematically mutagenized the entire CT and TMD of NA by converting two to five contiguous amino acids to alanine. In addition, we also made two chimeric NA by replacing the CT proximal one-third amino acids of the NA TMD [NA(1T2N)NA] and the entire NA TMD (NATRNA) with that of human transferrin receptor (TR) (a type II transmembrane glycoprotein). We rescued transfectant mutant viruses by reverse genetics and examined their phenotypes. Our results show that all mutated and chimeric NAs could be rescued into transfectant viruses. Different mutants showed pleiotropic effects on virus growth and replication. Some mutants (NA2A5, NA3A7, and NA4A10) had little effect on virus growth while others (NA3A2, NA5A27, and NA5A31) produced about 50- to 100-fold-less infectious virus and still some others (NA5A14, NA4A19, and NA4A23) exhibited an intermediate phenotype. In general, mutations towards the ectodomain-proximal sequences of TMD progressively caused reduction in NA enzyme activity, affected lipid raft association, and attenuated virus growth. Electron microscopic analysis showed that these mutant viruses remained aggregated and bound to infected cell surfaces and could be released from the infected cells by bacterial NA treatment. Moreover, viruses containing mutations in the extreme N terminus of the CT (NA3A2) as well as chimeric NA containing the TMD replaced partially [NA(1T2N)NA] or fully (NATRNA) with TR TMD caused reduction in virus growth and exhibited the morphological phenotype of elongated particles. These results show that although the sequences of NA CT and TMD per se are not absolutely essential for the virus life cycle, specific amino acid sequences play a critical role in providing structural stability, enzyme activity, and lipid raft association of NA. In addition, aberrant morphogenesis including elongated particle formation of some mutant viruses indicates the involvement of NA in virus morphogenesis and budding.


2021 ◽  
Vol 22 (12) ◽  
pp. 6213
Author(s):  
Seonghyeon Moon ◽  
Srinivasan Muniyappan ◽  
Sung-Bae Lee ◽  
Byung-Hoon Lee

The 26S proteasome is the principal protease for regulated intracellular proteolysis. This multi-subunit complex is also pivotal for clearance of harmful proteins that are produced throughout the lifetime of eukaryotes. Recent structural and kinetic studies have revealed a multitude of conformational states of the proteasome in substrate-free and substrate-engaged forms. These conformational transitions demonstrate that proteasome is a highly dynamic machinery during substrate processing that can be also controlled by a number of proteasome-associated factors. Essentially, three distinct family of deubiquitinases–USP14, RPN11, and UCH37–are associated with the 19S regulatory particle of human proteasome. USP14 and UCH37 are capable of editing ubiquitin conjugates during the process of their dynamic engagement into the proteasome prior to the catalytic commitment. In contrast, RPN11-mediated deubiquitination is directly coupled to substrate degradation by sensing the proteasome’s conformational switch into the commitment steps. Therefore, proteasome-bound deubiquitinases are likely to tailor the degradation events in accordance with substrate processing steps and for dynamic proteolysis outcomes. Recent chemical screening efforts have yielded highly selective small-molecule inhibitors for targeting proteasomal deubiquitinases, such as USP14 and RPN11. USP14 inhibitors, IU1 and its progeny, were found to promote the degradation of a subset of substrates probably by overriding USP14-imposed checkpoint on the proteasome. On the other hand, capzimin, a RPN11 inhibitor, stabilized the proteasome substrates and showed the anti-proliferative effects on cancer cells. It is highly conceivable that these specific inhibitors will aid to dissect the role of each deubiquitinase on the proteasome. Moreover, customized targeting of proteasome-associated deubiquitinases may also provide versatile therapeutic strategies for induced or repressed protein degradation depending on proteolytic demand and cellular context.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liqi Lu ◽  
Jie Wang ◽  
Qian Yang ◽  
Xiuqiao Xie ◽  
Yuanshuai Huang

AbstractThe widely-expressed molecule CD38 is a single-stranded type II transmembrane glycoprotein that is mainly involved in regulating the differentiation and activation state of the cell. CD38 has broad and complex functions, including enzymatic activity, intercellular signal transduction, cell activation, cytokine production, receptor function and adhesion activity, and it plays an important role in the physiological and pathological processes of many diseases. Many studies have shown that CD38 is related to the occurrence and development of HIV infection, and CD38 may regulate its progression through different mechanisms. Therefore, investigating the role of CD38 in HIV infection and the potential signaling pathways that are involved may provide a new perspective on potential treatments for HIV infection. In the present review, the current understanding of the roles CD38 plays in HIV infection are summarized. In addition, the specific role of CD38 in the process of HIV infection of human CD4+ T lymphocytes is also discussed.


2018 ◽  
Vol 37 (17) ◽  
Author(s):  
Matous Hrdinka ◽  
Lisa Schlicher ◽  
Bing Dai ◽  
Daniel M Pinkas ◽  
Joshua C Bufton ◽  
...  

Author(s):  
Shuting Gao ◽  
Xitong Li ◽  
Miao Zhang ◽  
Ning Zhang ◽  
Ruiyong Wang ◽  
...  

Studies have shown that the FTO gene is closely related to obesity and weight gain in humans. FTO is an N6-methyladenosine demethylase and is linked to an increased risk of obesity and a variety of diseases, such as acute myeloid leukemia, type 2 diabetes, breast cancer, glioblastoma and cervical squamous cell carcinoma. In light of the significant role of FTO, the development of small-molecule inhibitors targeting the FTO protein provides not only a powerful tool for grasping the active site of FTO but also a theoretical basis for the design and synthesis of drugs targeting the FTO protein. This review focuses on the structural characteristics of FTO inhibitors and discusses the occurrence of obesity and cancer caused by FTO gene overexpression.


Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 375-376
Author(s):  
Robert Zeiser

Edited by Associate Editor Robert Zeiser, this Review Series presents the current understanding of the pathophysiology of and therapeutic approaches to acute graft-versus-host disease (aGVHD). The articles discuss the role of the microbiome in contributing to aGVHD and review how novel cellular therapies, biologicals, and small-molecule inhibitors may advance its treatment.


Sign in / Sign up

Export Citation Format

Share Document