scholarly journals Unravelling the Photoprotective Mechanisms of Nature-Inspired Ultraviolet Filters Using Ultrafast Spectroscopy

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3945
Author(s):  
Temitope T. Abiola ◽  
Abigail L. Whittock ◽  
Vasilios G. Stavros

There are several drawbacks with the current commercially available ultraviolet (UV) filters used in sunscreen formulations, namely deleterious human and ecotoxic effects. As a result of the drawbacks, a current research interest is in identifying and designing new UV filters. One approach that has been explored in recent years is to use nature as inspiration, which is the focus of this review. Both plants and microorganisms have adapted to synthesize their own photoprotective molecules to guard their DNA from potentially harmful UV radiation. The relaxation mechanism of a molecule after it has been photoexcited can be unravelled by several techniques, the ones of most interest for this review being ultrafast spectroscopy and computational methods. Within the literature, both techniques have been implemented on plant-, and microbial-inspired UV filters to better understand their photoprotective roles in nature. This review aims to explore these findings for both families of nature-inspired UV filters in the hope of guiding the future design of sunscreens.

2017 ◽  
pp. 5-21 ◽  
Author(s):  
E. Yasin

The article is devoted to major events in the history of the post-Soviet economy, their influence on forming and development of modern Russia. The author considers stages of restructuring, market reforms, transformational crisis, and recovery growth (1999-2011), as well as a current period which started in2011 and is experiencing serious problems. The present situation is analyzed, four possible scenarios are put forward for Russia: “inertia”, “mobilization”, “decisive leap”, “gradual democratic development”. More than 30 experts were questioned in the process of working out the scenarios.


Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Johannes Ossig ◽  
Stephanie Cramer ◽  
Klaus Bengler

In the human-centered research on automated driving, it is common practice to describe the vehicle behavior by means of terms and definitions related to non-automated driving. However, some of these definitions are not suitable for this purpose. This paper presents an ontology for automated vehicle behavior which takes into account a large number of existing definitions and previous studies. This ontology is characterized by an applicability for various levels of automated driving and a clear conceptual distinction between characteristics of vehicle occupants, the automation system, and the conventional characteristics of a vehicle. In this context, the terms ‘driveability’, ‘driving behavior’, ‘driving experience’, and especially ‘driving style’, which are commonly associated with non-automated driving, play an important role. In order to clarify the relationships between these terms, the ontology is integrated into a driver-vehicle system. Finally, the ontology developed here is used to derive recommendations for the future design of automated driving styles and in general for further human-centered research on automated driving.


2020 ◽  
Vol 53 (2) ◽  
pp. 10196-10201
Author(s):  
Hans-Jürgen Buxbaum ◽  
Sumona Sen ◽  
Ruth Häusler

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 173
Author(s):  
Marina Kurbasic ◽  
Ana M. Garcia ◽  
Simone Viada ◽  
Silvia Marchesan

Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His–d-Phe–d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance.


2021 ◽  
Vol 12 (33) ◽  
pp. 8080-8087 ◽  
Author(s):  
Srijon Ghosh ◽  
Arnab Ghosh ◽  
Goutam Ghosh ◽  
Kritiman Marjit ◽  
Amitava Patra

2016 ◽  
Vol 12 (9) ◽  
pp. 20160509 ◽  
Author(s):  
S. D. Rundle ◽  
J. I. Spicer

There is a current surge of research interest in the potential role of developmental plasticity in adaptation and evolution. Here we make a case that some of this research effort should explore the adaptive significance of heterokairy, a specific type of plasticity that describes environmentally driven, altered timing of development within a species. This emphasis seems warranted given the pervasive occurrence of heterochrony, altered developmental timing between species, in evolution. We briefly review studies investigating heterochrony within an adaptive context across animal taxa, including examples that explore links between heterokairy and heterochrony. We then outline how sequence heterokairy could be included within the research agenda for developmental plasticity. We suggest that the study of heterokairy may be particularly pertinent in (i) determining the importance of non-adaptive plasticity, and (ii) embedding concepts from comparative embryology such as developmental modularity and disassociation within a developmental plasticity framework.


2010 ◽  
Vol 133-134 ◽  
pp. 665-670 ◽  
Author(s):  
N. Claudia ◽  
B. Cancino

The Pisco earthquake of August 15, 2007 resulted in 519 deaths and 1366 injured, with a total of 650,000 people affected and 80,000 dwellings damaged. Preliminary reports indicated that significant earthen sites were damaged. A few months after the earthquake a rapid assessment to better understand the failure of the affected sites was performed by a multidisciplinary team convened by the Getty Conservation Institute (GCI) in response to a request from the Instituto Nacional de Cultura del Perú (INC). This paper presents the highlights of that evaluation and its implications for the future design and retrofit of earthen buildings.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Katherine K. Fu ◽  
Maria C. Yang ◽  
Kristin L. Wood

Design principles are created to codify and formalize design knowledge so that innovative, archival practices may be communicated and used to advance design science and solve future design problems, especially the pinnacle, wicked, and grand-challenge problems that face the world and cross-cutting markets. Principles are part of a family of knowledge explication, which also include guidelines, heuristics, rules of thumb, and strategic constructs. Definitions of a range of explications are explored from a number of seminal papers. Based on this analysis, the authors pose formalized definitions for the three most prevalent terms in the literature—principles, guidelines, and heuristics—and draw more definitive distinctions between the terms. Current research methods and practices with design principles are categorized and characterized. We further explore research methodologies, validation approaches, semantic principle composition through computational analysis, and a proposed formal approach to articulating principles. In analyzing the methodology for discovering, deriving, formulating, and validating design principles, the goal is to understand and advance the theoretical basis of design, the foundations of new tools and techniques, and the complex systems of the future. Suggestions for the future of design principles research methodology for added rigor and repeatability are proposed.


2021 ◽  
Author(s):  
Aleksei Kondratenko ◽  
Alper Kanyilmaz ◽  
Carlo Andrea Castiglioni ◽  
Francesco Morelli ◽  
Mohsen Kohrangi

Abstract Automated Multi-Depth Shuttle Warehouses (AMSWs) are compact storage systems that provide a large surface occupation and therefore maximum storage density. AMSWs represent the future of storage technology, providing substantial savings in terms of cost, space, and energy with respect to traditional warehouses. Currently, designers refer to the standard building codes for the seismic design of AMSWs. Since structural characteristics of AMSWs are considerably different from the steel structures of typical buildings, this current approach used by designers is questionable in terms of safety and efficiency. In this article, the behavior of 5 AMSW structures has been studied performing 150 time-history analyses by direct integration including P-Delta effects. Demand/capacity ratios calculated for each element showed the dominance of the brittle failure mechanism in AMSWs subjected to low-to-moderate seismic actions. These mechanisms mainly took place in upright columns and their base connections prior to the activation of ductile energy dissipation mechanisms of the structure. Based on the results, further improvements have been recommended for the future design provisions, which may lead to a safer seismic design of AMSWs.


Sign in / Sign up

Export Citation Format

Share Document