scholarly journals Multi-Target Strategy to Uncover Unexpected Compounds in Rinse-Off and Leave-On Cosmetics

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2504
Author(s):  
Maria Celeiro ◽  
Laura Rubio ◽  
Carmen Garcia-Jares ◽  
Marta Lores

The wide range and complexity of cosmetic formulations currently available on the market poses a challenge from an analytical point of view. In addition, during cosmetics manufacture, impurities coming from raw materials or formed by reaction of different organic compounds present in the formulation may be present. Their identification is mandatory to assure product quality and consumer health. In this work, micro-matrix solid-phase dispersion (μMSPD) is proposed as a multi-target sample preparation strategy to analyze a wide number of unexpected families of compounds including polycyclic aromatic hydrocarbons (PAHs), pesticides, plasticizers, nitrosamines, alkylphenols (APs), and alkylphenol ethoxylates (APEOs). Analytical determination was performed by gas chromatography-mass spectrometry (GC-MS) for the determination of 51 target compounds in a single run, whereas liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed for the analysis of six APs and APEOs. Both methodologies were successfully validated in terms of linearity, accuracy, and precision in leave-on and rinse-off cosmetics. Limits of detection (LODs) were calculated in the low ng g−1, showing their suitability to determine trace levels of impurities and banned compounds with different chemical natures, providing useful tools to cosmetic control laboratories and companies.

2007 ◽  
Vol 189 (13) ◽  
pp. 4635-4647 ◽  
Author(s):  
Ohgew Kweon ◽  
Seong-Jae Kim ◽  
Richard C. Jones ◽  
James P. Freeman ◽  
Michael D. Adjei ◽  
...  

ABSTRACT Mycobacterium vanbaalenii PYR-1 is capable of degrading a wide range of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), including fluoranthene. We used a combination of metabolomic, genomic, and proteomic technologies to investigate fluoranthene degradation in this strain. Thirty-seven fluoranthene metabolites including potential isomers were isolated from the culture medium and analyzed by high-performance liquid chromatography, gas chromatography-mass spectrometry, and UV-visible absorption. Total proteins were separated by one-dimensional gel and analyzed by liquid chromatography-tandem mass spectrometry in conjunction with the M. vanbaalenii PYR-1 genome sequence (http://jgi.doe.gov ), which resulted in the identification of 1,122 proteins. Among them, 53 enzymes were determined to be likely involved in fluoranthene degradation. We integrated the metabolic information with the genomic and proteomic results and proposed pathways for the degradation of fluoranthene. According to our hypothesis, the oxidation of fluoranthene is initiated by dioxygenation at the C-1,2, C-2,3, and C-7,8 positions. The C-1,2 and C-2,3 dioxygenation routes degrade fluoranthene via fluorene-type metabolites, whereas the C-7,8 routes oxidize fluoranthene via acenaphthylene-type metabolites. The major site of dioxygenation is the C-2,3 dioxygenation route, which consists of 18 enzymatic steps via 9-fluorenone-1-carboxylic acid and phthalate with the initial ring-hydroxylating oxygenase, NidA3B3, oxidizing fluoranthene to fluoranthene cis-2,3-dihydrodiol. Nonspecific monooxygenation of fluoranthene with subsequent O methylation of dihydroxyfluoranthene also occurs as a detoxification reaction.


2005 ◽  
Vol 88 (2) ◽  
pp. 630-638 ◽  
Author(s):  
Steven J Lehotay ◽  
Kateřina Maštovská ◽  
Seon Jong Yun

Abstract Two rapid methods of sample preparation and analysis of fatty foods (e.g., milk, eggs, and avocado) were evaluated and compared for 32 pesticide residues representing a wide range of physicochemical properties. One method, dubbed the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residue analysis, entailed extraction of 15 g sample with 15 mL acetonitrile (MeCN) containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 1 mL of the buffered MeCN extract underwent a cleanup step (in a technique known as dispersive solid-phase extraction) using 50 mg each of C18 and primary secondary amine sorbents plus 150 mg MgSO4. The second method incorporated a form of matrix solid-phase dispersion (MSPD), in which 0.5 g sample plus 2 g C18 and 2 g anhydrous sodium sulfate was mixed in a mortar and pestle and added above a 2 g Florisil column on a vacuum manifold. Then, 5 × 2 mL MeCN was used to elute the pesticide analytes from the sample into a collection tube, and the extract was concentrated to 0.5 mL by evaporation. Extracts in both methods were analyzed concurrently by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. The recoveries of semi-polar and polar pesticides were typically 100% in both methods (except that basic pesticides, such as thiabendazole and imazalil, were not recovered in the MSPD method), but recovery of nonpolar pesticides decreased as fat content of the sample increased. This trend was more pronounced in the QuEChERS method, in which case the most lipophilic analyte tested, hexachlorobenzene, gave 27 ± 1% recovery (n = 6) in avocado (15% fat) with a <10 ng/g limit of quantitation.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1639 ◽  
Author(s):  
Liakh ◽  
Pakiet ◽  
Sledzinski ◽  
Mika

Oxylipins are potent lipid mediators derived from polyunsaturated fatty acids, which play important roles in various biological processes. Being important regulators and/or markers of a wide range of normal and pathological processes, oxylipins are becoming a popular subject of research; however, the low stability and often very low concentration of oxylipins in samples are a significant challenge for authors and continuous improvement is required in both the extraction and analysis techniques. In recent years, the study of oxylipins has been directly related to the development of new technological platforms based on mass spectrometry (LC–MS/MS and gas chromatography–mass spectrometry (GC–MS)/MS), as well as the improvement in methods for the extraction of oxylipins from biological samples. In this review, we systematize and compare information on sample preparation procedures, including solid-phase extraction, liquid–liquid extraction from different biological tissues.


Sign in / Sign up

Export Citation Format

Share Document