scholarly journals Brain Long Noncoding RNAs: Multitask Regulators of Neuronal Differentiation and Function

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3951
Author(s):  
Sarva Keihani ◽  
Verena Kluever ◽  
Eugenio F. Fornasiero

The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a ‘coding molecule’ has been largely surpassed, together with the conception that lncRNAs only represent ‘waste material’ produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.

2020 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Liming Chen ◽  
Yifan Bao ◽  
Suzhen Jiang ◽  
Xiao-bo Zhong

Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hidenori Tani ◽  
Ayaka Numajiri ◽  
Motohide Aoki ◽  
Tomonari Umemura ◽  
Tetsuya Nakazato

AbstractLong noncoding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length that have been shown to play important roles in various biological processes. The mechanisms underlying the induction of lncRNA expression by chemical exposure remain to be determined. We identified a novel class of short-lived lncRNAs with half-lives (t1/2) ≤4 hours in human HeLa Tet-off cells, which have been suggested to express many lncRNAs with regulatory functions. As they may affect various human biological processes, short-lived lncRNAs may be useful indicators of the degree of stress on chemical exposure. In the present study, we identified four short-lived lncRNAs, designated as OIP5-AS1, FLJ46906, LINC01137, and GABPB1-AS1, which showed significantly upregulated expression following exposure to hydrogen peroxide (oxidative stress), mercury II chloride (heavy metal stress), and etoposide (DNA damage stress) in human HepG2 cells. These lncRNAs may be useful indicators of chemical stress responses. The levels of these lncRNAs in the cells were increased because of chemical stress-induced prolongation of their decay. These lncRNAs were degraded by nuclear RNases, which are components of the exosome and XRN2, and chemical exposure inhibited the RNase activities within the cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Haihong Shi ◽  
Yuxin Xu ◽  
Xin Yi ◽  
Dandan Fang ◽  
Xia Hou

Hepatocellular carcinoma (HCC) is the second leading cause of mortality among cancers. It has been found that long noncoding RNAs (lncRNAs) are involved in many human cancers, including liver cancer. It has been identified that carcinogenic and tumor-suppressing lncRNAs are associated with complex processes in liver cancer. These lncRNAs may participate in a variety of pathological and biological activities, such as cell proliferation, apoptosis, invasion, and metastasis. Here, we review the regulation and function of lncRNA in liver cancer and evaluate the potential of lncRNA as a new goal for liver cancer.


2014 ◽  
Vol 30 (8) ◽  
pp. 348-355 ◽  
Author(s):  
Keith W. Vance ◽  
Chris P. Ponting

2018 ◽  
Author(s):  
Alice Pieri ◽  
Mario Enrico Pè ◽  
Edoardo Bertolini

AbstractTriticum urartu and Aegilops tauschii are the diploid progenitors of the hexaploid Triticum aestivum (AuAuBBDD), donors of the Au and D genome respectively. In this work we investigate the long noncoding RNAs (lncRNAs) component of the genomes of these two wild wheat relatives. Sixty-eight RNA-seq libraries generated from several organs and conditions were retrieved from public databases. We annotated and characterized 14,515 T. urartu and 20,908 Ae. tauschii bona-fide lncRNA transcripts that show features similar to those of other plant and animal counterparts. Thousands of lncRNAs were found significantly modulated in different organs and exhibited organ specific expression, with a predominant accumulation in the spike, fostering the hypothesis of their crucial role in reproductive organs. Most of the organ-specific lncRNAs were found associated with transposable elements (TEs), indicating the possible role of TEs in lncRNA origin, differentiation and function. The majority of T. urartu and Ae. tauschii lncRNAs appear to be species-specific; nevertheless, we found some lncRNAs conserved between the two wheat progenitors, highlighting the presence and conservation of exonic splicing enhancers sites in multi-exon conserved lncRNAs. In addition, we found cases of lncRNA conservation and their cis regulatory regions spanning the wheat pre-domestication and post-domestication period. Altogether, these results represent the first comprehensive genome-wide encyclopedia of lncRNAs in wild wheat relatives, and they provide clues as to the hidden regulatory pathway mediated by long noncoding RNAs in these largely unexplored wheat progenitors.


2017 ◽  
Vol 216-217 ◽  
pp. 105-110 ◽  
Author(s):  
Weiliang Sun ◽  
Yunben Yang ◽  
Chunjing Xu ◽  
Junming Guo

2015 ◽  
Vol 15 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Xingli Guo ◽  
Lin Gao ◽  
Yu Wang ◽  
David K. Y. Chiu ◽  
Tong Wang ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 2698 ◽  
Author(s):  
Hyun Jin Jung ◽  
Hyun-Ju Kim ◽  
Kwan-Kyu Park

Many studies have made clear that most of the genome is transcribed into noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), both of which can affect different cell features. LncRNAs are long heterogeneous RNAs that regulate gene expression and a variety of signaling pathways involved in cellular homeostasis and development. Several studies have demonstrated that lncRNA is an important class of regulatory molecule that can be targeted to change cellular physiology and function. The expression or dysfunction of lncRNAs is closely related to various hereditary, autoimmune, and metabolic diseases, and tumors. Specifically, recent work has shown that lncRNAs have an important role in kidney pathogenesis. The effective roles of lncRNAs have been recognized in renal ischemia, injury, inflammation, fibrosis, glomerular diseases, renal transplantation, and renal-cell carcinoma. The present review focuses on the emerging role and function of lncRNAs in the pathogenesis of kidney inflammation and fibrosis as novel essential regulators. Although lncRNAs are important players in the initiation and progression of many pathological processes, their role in renal fibrosis remains unclear. This review summarizes the current understanding of lncRNAs in the pathogenesis of kidney fibrosis and elucidates the potential role of these novel regulatory molecules as therapeutic targets for the clinical treatment of kidney inflammation and fibrosis.


Sign in / Sign up

Export Citation Format

Share Document