scholarly journals Dental Applications of Carbon Nanotubes

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4423
Author(s):  
Marco A. Castro-Rojas ◽  
Yadira I. Vega-Cantu ◽  
Geoffrey A. Cordell ◽  
Aida Rodriguez-Garcia

Glass ionomer cements and resin-based composites are promising materials in restorative dentistry. However, their limited mechanical properties and the risk of bulk/marginal fracture compromise their lifespan. Intensive research has been conducted to understand and develop new materials that can mimic the functional behavior of the oral cavity. Nanotechnological approaches have emerged to treat oral infections and become a part of scaffolds for tissue regeneration. Carbon nanotubes are promising materials to create multifunctional platforms for dental applications. This review provides a comprehensive survey of and information on the status of this state-of-the-art technology and describes the development of glass ionomers reinforced with carbon nanotubes possessing improved mechanical properties. The applications of carbon nanotubes in drug delivery and tissue engineering for healing infections and lesions of the oral cavity are also described. The review concludes with a summary of the current status and presents a vision of future applications of carbon nanotubes in the practice of dentistry.

2016 ◽  
Vol 10 (4s) ◽  
pp. 581-586 ◽  
Author(s):  
Eldar Zeynalov ◽  
◽  
Manfred Wagner ◽  
Joerg Friedrich ◽  
Matanat Magerramova ◽  
...  

This review briefly gives the status of worldwide researches in the aspect of an impact of incorporated fullerenes and carbon nanotubes (CNTs) on durability of different polymeric composites under stressful harsh therm-oxidative conditions. It has been inferred that among various nanoparticulates, fullerenes and CNTs are preferable to be used for enhancing thermal and mechanical properties of polymers. Fullerenes C60, C70, fullerene soot and CNTs being integrated in polymer matrix effectively prevent both their thermal and thermoxidative degradation, and photooxidation processes as well.


2021 ◽  
Author(s):  
Radhika Wazalwar ◽  
Megha Sahu ◽  
Ashok M. Raichur

Epoxy composites find application in the aerospace industry. Although epoxy is a high-performance polymer, its fracture toughness is compromised due to its highly cross-linked nature. Nanomaterials such as carbon nanotubes...


Nanoscale ◽  
2015 ◽  
Vol 7 (23) ◽  
pp. 10294-10329 ◽  
Author(s):  
N. Domun ◽  
H. Hadavinia ◽  
T. Zhang ◽  
T. Sainsbury ◽  
G. H. Liaghat ◽  
...  

The mechanical properties of epoxy reinforced by carbon nanotubes, graphene, nanosilica and nanoclays are reviewed and the effects of nanoparticles loading on enhancing the toughness, stiffness and strength are summarised.


2004 ◽  
Vol 126 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Min-Feng Yu

Representing a new class of nanoscale material, carbon nanotubes possess many extraordinary mechanical and electronic properties stemming essentially from their unique geometric and chemical structures. Through more than two decades of extensive theoretical and experimental investigations, our understanding on the mechanical properties of carbon nanotubes has greatly improved. The intrinsic mechanical properties of carbon nanotubes, such as their stiffness, strength and deformability, have been relatively well studied and understood; and other mechanics-related properties of carbon nanotubes, such as the defect formation, the fracture mechanism, the interface mechanics and the electromechanics, have also being broadly examined and a comprehensive knowledge of them begins to emerge. I review the current status of research on the mechanical study of carbon nanotubes, especially on the experimental study of their fundamental mechanical properties, such as Young’s modulus, tensile and shear strength, compressibility and deformability. Selected experimental methods and techniques used for the studies will also be introduced. I conclude the review by discussing the new challenges still facing the mechanical study of carbon nanotubes.


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

Author(s):  
E.G. Borisova ◽  
◽  
A.A. Komova ◽  
E.A. Nikitina ◽  
◽  
...  
Keyword(s):  

2015 ◽  
Vol 57 (5) ◽  
pp. 447-457 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Ahmed K. Abdellatif ◽  
Gamal S. Abdelhaffez

Author(s):  
Nagalakshmi Chowdhary ◽  
N. K. Kiran ◽  
A. Lakshmi Priya ◽  
Rajashekar Reddy ◽  
Arvind Sridhara ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 923
Author(s):  
Kun Huang ◽  
Ji Yao

The potential application field of single-walled carbon nanotubes (SWCNTs) is immense, due to their remarkable mechanical and electrical properties. However, their mechanical properties under combined physical fields have not attracted researchers’ attention. For the first time, the present paper proposes beam theory to model SWCNTs’ mechanical properties under combined temperature and electrostatic fields. Unlike the classical Bernoulli–Euler beam model, this new model has independent extensional stiffness and bending stiffness. Static bending, buckling, and nonlinear vibrations are investigated through the classical beam model and the new model. The results show that the classical beam model significantly underestimates the influence of temperature and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of the classical beam model of SWCNTs.


Sign in / Sign up

Export Citation Format

Share Document