scholarly journals Nematicidal Activity of Grammicin Biosynthesis Pathway Intermediates in Xylaria grammica KCTC 13121BP against Meloidogyne incognita

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4675
Author(s):  
Yoonjee Kim ◽  
Kalaiselvi Duraisamy ◽  
Minhye Jeong ◽  
Sookyoung Park ◽  
Soonok Kim ◽  
...  

Grammicin, a polyketide metabolite produced by the endolichenic fungus Xylaria grammica KCTC 13121BP, shows strong nematicidal activity against Meloidogyne incognita. This study was performed to elucidate the grammicin biosynthesis pathway of X. grammica KCTC 13121BP and to examine the nematicidal activity of the biosynthesis intermediates and derivatives against M. incognita. Two grammicin biosynthesis intermediates were isolated from a T-DNA insertion transformant (strain TR-74) of X. grammica KCTC 13121BP and identified as 2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione (compound 1) and 2,5-dihydroxybenzaldehyde (compound 2), which were also reported to be intermediates in the biosynthesis pathway of patulin, an isomer of grammicin. This indicates that the grammicin biosynthesis pathway overlaps almost with that of patulin, except for the last few steps. Among 13 grammicin biosynthesis intermediates and their derivatives (except grammicin), toluquinol caused the highest M. incognita J2 mortality, with an LC50/72 h value of 11.13 µg/mL, which is similar to grammicin with an LC50/72 h value of 15.95 µg/mL. In tomato pot experiments, the wettable powder type formulations (WP) of toluquinol (17.78 µg/mL) and grammicin (17.78 µg/mL) also effectively reduced gall formation on the roots of tomato plants with control values of 72.22% and 77.76%, respectively, which are much higher than abamectin (16.67%), but lower than fosthiazate (100%). The results suggest that toluquinol can be used directly as a biochemical nematicide or as a lead molecule for the development of new synthetic nematicides for the control of root-knot nematode diseases.

2010 ◽  
Vol 100 (2) ◽  
pp. 199-203 ◽  
Author(s):  
Sergio Echeverrigaray ◽  
Jucimar Zacaria ◽  
Ricardo Beltrão

Nematicidal activity of 22 monoterpenoids were evaluated in vitro and in pot experiments. Twenty of the twenty-two monoterpenoids significantly reduced hatching, and 11 reduced J2 mobility of the root-knot nematode Meloidogyne incognita at a concentration of 250 mg/liter. In general, compounds with hydroxyl and carbonyl groups exhibited higher nematicidal activity than other terpenoids. Borneol, carveol, citral, geraniol, and α-terpineol showed the highest nematicidal activity among the in vitro tested monoterpenoids. These compounds exhibited a dose dependent effect, and drastically reduced eggs hatching and J2 viability at low concentrations. These monoterpenoids, at 100 and 250 mg/kg concentration, diminished root galling of tomato plants in pot experiments. The results suggest that the selected monoterpenoids, and essential oils with high concentration of these compounds, are potential nematicides against Meloidogyne.


Nematology ◽  
2014 ◽  
Vol 16 (8) ◽  
pp. 889-893 ◽  
Author(s):  
Hidetaka Nishiyama ◽  
Satoru Nakagami ◽  
Akihiko Todaka ◽  
Tetsuya Arita ◽  
Takashi Ishida ◽  
...  

Meloidogyne incognita is one of the most detrimental root-knot nematode pests in the world because of its wide range of hosts, infecting almost all plant species. Following infection, this nematode induces gall formation in the root. We have found that these induced galls turn green in tomato roots exposed to light. This gall greening was light-dependent and inhibited by auxin treatment. Chlorophyll was detected in these green galls, and chloroplasts were also observed in the root-knot region. Expression of the chlorophyll a/b-binding protein-4 gene was upregulated in the galls. These results indicate that light treatment induces chloroplast development in tomato plants infected with M. incognita during gall development.


2012 ◽  
Vol 102 (3) ◽  
pp. 260-266 ◽  
Author(s):  
A. Martinuz ◽  
A. Schouten ◽  
R. A. Sikora

The root-knot nematode, Meloidogyne incognita, is among the most damaging agricultural pests, particularly to tomato. The mutualistic endophytes Fusarium oxysporum strain Fo162 (Fo162) and Rhizobium etli strain G12 (G12) have been shown to systemically induce resistance toward M. incognita. By using triple-split-root tomato plants, spatially separated but simultaneous inoculation of both endophytes did not lead to additive reductions in M. incognita infection. More importantly, spatially separated inoculation of Fo162 and G12 led to a reduction in Fo162 root colonization of 35 and 39% when G12 was inoculated on a separate root section of the same plant in two independent experiments. In an additional split-root experiment, spatial separation of Fo162 and G12 resulted in a reduction of Fo162 root colonization of approximately 50% over the water controls in two independent experiments. The results suggested that the suppressive activity of G12 on Fo162 and M. incognita is possibly related to the induction of specific plant defense mechanisms. Thus, although Fo162 and G12 have the ability to systemically repress M. incognita infection in tomato, they can be considered incompatible biocontrol agents when both organisms are present simultaneously on the same root system.


Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 509-520 ◽  
Author(s):  
Tushar K. Dutta ◽  
Stephen J. Powers ◽  
Brian R. Kerry ◽  
Hari S. Gaur ◽  
Rosane H.C. Curtis

AbstractThe rice root-knot nematode Meloidogyne graminicola normally infects rice, wheat and several other graminaceous plants. Meloidogyne incognita is a serious pest of dicotyledonous crops, although it can infect and reproduce on some cereals. This paper demonstrates and compares host recognition, development and reproduction of these two species of root-knot nematodes on rice and tomato plants. Attraction bioassays in pluronic gel clearly showed that M. incognita preferred tomato roots to rice or mustard roots, whilst M. graminicola was more attracted towards rice compared with tomato or mustard roots. Based on the attraction data from this study, it can be hypothesised that either: i) the blend of attractants and repellents are different in good and poor hosts; or ii) relatively long-range attractants, together with shorter-range repellents, might affect nematode movement patterns. Some host specific attractants might also be involved. Meloidogyne incognita was able to invade and develop to adult female but did not produce eggs in rice roots. By contrast, M. graminicola developed and reproduced faster on both rice and tomato plants compared with M. incognita. Nevertheless, second-stage juveniles of both these root-knot nematodes showed a similar pattern of distribution inside the roots, preferring to accumulate at the root tips of rice or in the vascular cylinder and cortical region of tomato.


Nematology ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 545-555 ◽  
Author(s):  
Yong Seong Lee ◽  
Muhammad Anees ◽  
Hae Nam Hyun ◽  
Kil Yong Kim

Lysobacter antibioticus HS124 is an antagonistic bacterial strain that was previously isolated from the rhizosphere soil of pepper and showed an enhanced ability to produce lytic enzymes as well as an antibiotic that was identified as 4-hydroxyphenylacetic acid (4-HPAA). In the present study, nematicidal activity of the strain and 4-HPAA against the root-knot nematode, Meloidogyne incognita, causing disease in tomato was investigated in both in vitro and in vivo conditions. For this purpose, adding different concentrations of culture filtrate, crude extract collected from extraction with ethyl acetate and 4-HPAA, in 24-well plates containing ca 500 eggs or 300 second-stage juveniles (J2), significantly decreased the rate of nematode hatch and caused higher mortality of J2 compared with the control treatments. Nematicidal activity of the bacterial strain was further confirmed by conducting pot experiments in which tomato plants were inoculated with M. incognita and the HS124 culture (BC). The control pots were treated with commercial nematicide (CN, 5% Ethoprophos), tap water (TW) or the non-inoculated bacterial culture medium (BCM). In these pot experiments, results demonstrated a strong antagonistic potential of L. antibioticus HS124 against M. incognita where the disease was significantly reduced in the pots treated with BC as compared to TW or BCM. Furthermore, the shoot fresh weight was also increased significantly, which may be attributed to the disease control ability of the strain. Hence, L. antibioticus HS124 may be further developed as a potential biocontrol of root knot nematode in the field.


Sign in / Sign up

Export Citation Format

Share Document