scholarly journals New Kendomycin Derivative Isolated from Streptomyces sp. Cl 58-27

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6834
Author(s):  
Constanze Paulus ◽  
Oleksandr Gromyko ◽  
Andriy Luzhetskyy

In the course of screening new streptomycete strains, the strain Streptomyces sp. Cl 58-27 caught our attention due to its interesting secondary metabolite production profile. Here, we report the isolation and characterization of an ansamycin natural product that belongs structurally to the already known kendomycins. The structure of the new kendomycin E was elucidated using NMR spectroscopy, and the corresponding biosynthetic gene cluster was identified by sequencing the genome of Streptomyces sp. Cl 58-27 and conducting a detailed analysis of secondary metabolism gene clusters using bioinformatic tools.

Gene ◽  
2006 ◽  
Vol 377 ◽  
pp. 109-118 ◽  
Author(s):  
Min He ◽  
Bradley Haltli ◽  
Mia Summers ◽  
Xidong Feng ◽  
John Hucul

2020 ◽  
Vol 8 (1) ◽  
pp. 121 ◽  
Author(s):  
Nabila Mohammed Ishaque ◽  
Ilia Burgsdorf ◽  
Jessie James Limlingan Malit ◽  
Subhasish Saha ◽  
Roberta Teta ◽  
...  

Streptomyces are among the most promising genera in terms of production ability to biosynthesize a variety of bioactive secondary metabolites with pharmaceutical interest. Coinciding with the increase in genomic sequencing of these bacteria, mining of their genomes for biosynthetic gene clusters (BGCs) has become a routine component of natural product discovery. Herein, we describe the isolation and characterization of a Streptomyces tendae VITAKN with quorum sensing inhibitory (QSI) activity that was isolated from southern coastal part of India. The nearly complete genome consists of 8,621,231bp with a GC content of 72.2%. Sequence similarity networks of the BGCs detected from this strain against the Minimum Information about a Biosynthetic Gene Cluster (MIBiG) database and 3365 BGCs predicted by antiSMASH analysis of publicly available complete Streptomyces genomes were generated through the BiG-SCAPE-CORASON platform to evaluate its biosynthetic novelty. Crude extract analysis using high-performance liquid chromatography connected to high resolution tandem mass spectrometry (HPLC-HRMS/MS) and dereplication through the Global Natural Product Social Molecular Networking (GNPS) online workflow resulted in the identification of cyclic dipeptides (2, 5-diketopiperazines, DKPs) in the extract, which are known to possess QSI activity. Our results highlight the potential of genome mining coupled with LC-HRMS/MS and in silico tools (GNPS) as a valid approach for the discovery of novel QSI lead compounds. This study also provides the biosynthetic diversity of BGCs and an assessment of the predicted chemical space yet to be discovered.


2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Hisayuki Komaki ◽  
Akira Hosoyama ◽  
Natsuko Ichikawa ◽  
Yasuhiro Igarashi

We report the draft genome sequence of Streptomyces sp. TP-A0874 isolated from compost. This strain produces catechoserine, a new catecholate-type inhibitor of tumor cell invasion. The genome harbors at least six gene clusters for polyketide and nonribosomal peptide biosyntheses. The biosynthetic gene cluster for catechoserines was identified by bioinformatic analysis.


2004 ◽  
Vol 230 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Madan Kumar Kharel ◽  
Devi Bahadur Basnet ◽  
Hei Chan Lee ◽  
Kwangkyoung Liou ◽  
Jin Suk Woo ◽  
...  

2020 ◽  
Vol 22 (12) ◽  
pp. 4614-4619 ◽  
Author(s):  
Ling Liu ◽  
Sainan Li ◽  
Runze Sun ◽  
Xiangjing Qin ◽  
Jianhua Ju ◽  
...  

2019 ◽  
Vol 116 (40) ◽  
pp. 19805-19814 ◽  
Author(s):  
Zachary L. Reitz ◽  
Clifford D. Hardy ◽  
Jaewon Suk ◽  
Jean Bouvet ◽  
Alison Butler

Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate–dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization—existing either as fused domains (IβHAsp) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβHAsp)—and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l-threo (2S, 3S) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l-erythro (2S, 3R) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l-threo and l-erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate–dependent enzymes (IβHHis) hydroxylates histidyl residues with l-threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized.


2017 ◽  
Author(s):  
Jacob Gubbens ◽  
Changsheng Wu ◽  
Hua Zhu ◽  
Dmitri V. Filippov ◽  
Bogdan I. Florea ◽  
...  

ABSTRACTThe explosive increase in genome sequencing and the advances in bioinformatic tools have revolutionized the rationale for natural product discovery from actinomycetes. In particular, this has revealed that actinomycete genomes contain numerous orphan gene clusters that have the potential to specify many yet unknown bioactive specialized metabolites, representing a huge unexploited pool of chemical diversity. Here, we describe the discovery of a novel group of catecholate-hydroxamate siderophores termed qinichelins (2–5) fromStreptomycessp. MBT76. Correlation between the metabolite levels and the protein expression profiles identified the biosynthetic gene cluster (BGC; namedqch) most likely responsible for qinichelin biosynthesis. The structure of the molecules was elucidated by bioinformatics, mass spectrometry and NMR. Synthesis of the qinichelins requires the interplay between four gene clusters, for its synthesis and for precursor supply. This biosynthetic complexity provides new insights into the challenges scientists face when applying synthetic biology approaches for natural product discovery.Pride repository reviewer account details:URL:https://www.ebi.ac.uk/pride/archive/loginProject accession: PXD006577Username: [email protected]: 3H0iM1FK


Sign in / Sign up

Export Citation Format

Share Document