scholarly journals Prunetin 4′-O-Phosphate, a Novel Compound, in RAW 264.7 Macrophages Exerts Anti-Inflammatory Activity viaSuppression of MAP Kinases and the NFκB Pathway

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6841
Author(s):  
Tae-Jin Park ◽  
Hyehyun Hong ◽  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
Won-Jae Chi ◽  
...  

Biorenovation, a microbial enzyme-assisted degradation process of precursor compounds, is an effective approach to unraveling the potential bioactive properties of the derived compounds. In this study, we obtained a new compound, prunetin 4′-O-phosphate (P4P), through the biorenovation of prunetin (PRN), and investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. The anti-inflammatory effect of P4P was evaluated by measuring the production of prostaglandin-E2 (PGE2), nitric oxide (NO), which is an inflammation-inducing factor, and related cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL1β), and interleukin-6 (IL6). The findings demonstrated that P4P was non-toxic to cells, and its inhibition of the secretion of NO—as well as pro-inflammatory cytokines—was concentration-dependent. A simultaneous reduction in the protein expression level of pro-inflammatory proteins such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was observed. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and nuclear factor kappa B (NFκB) was downregulated. To conclude, we report that biorenovation-based phosphorylation of PRN improved its anti-inflammatory activity. Cell-based in vitro assays further confirmed that P4P could be applied in the development of anti-inflammatory therapeutics.

Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


Author(s):  
Chun Whan Choi ◽  
Ju Young Shin ◽  
Changon Seo ◽  
Seong Su Hong ◽  
Eun-Kyung Ahn ◽  
...  

Background: Plants still remain the prime source of drugs for the treatment of inflammation and can provide leads for the development of novel anti-inflammatory agents. Material and methods: An in vitro bioassay guide revealed that the 80% ethanol (EtOH) extract of the whole plant, Amomum tsao-ko (Zingiberaceae), displayed anti-inflammatory activity after assessing its effects on murine macrophage RAW 264.7 cells. Result: Phytochemical study of the 80% EtOH extract of Amomum tsao-ko led to the isolation of eight compounds: 4-hydroxy-3-methoxy-benzoic acid (1), meso-hannokinol (2), (+)-hannokinol (3), coumaric acid (4), 4-hydroxy-benzoic acid (5), (+)-epicatechin (6), (-)-catechin (7), and myrciaphenone A (8). The results indicated that two of the isolated components, (+)-epicatechin (6) and (-)-catechin (7), inhibited the production of nitric oxide (NO) significantly in lipopolysaccharide treated RAW 264.7 cells. Conclusion: LPS-induced interleukin tumor necrosis factor-alpha (TNF-), IL-1β and IL-10 production was also decreased in a dose-dependent manner. In addition, western blot analysis revealed that (+)-epicatechin (6) and (-)-catechin (7) reduced the expression of inducible nitric oxide synthase and inhibited nuclear localization of nuclear factor kappa-B (NF-κB).


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3784
Author(s):  
Jingya Ruan ◽  
Ying Zhang ◽  
Wei Zhao ◽  
Fan Sun ◽  
Lifeng Han ◽  
...  

Two new 12,23-epoxydammarane-type saponins, notoginsenosides NL-I (1) and NL-J (2), were isolated and identified from Panax notoginseng leaves through the combination of various chromatographies and extensive spectroscopic methods, as well as chemical reactions. Among them, notoginsenoside NL-J (2) had a new skeleton. Furthermore, the lipopolysaccharide (LPS)-induced RAW 264.7 macrophage model was used to identify the in vitro anti-inflammatory activity and mechanisms of compounds 1 and 2. Both of them exerted strong inhibition on nitric oxide (NO) productions in a concentration-dependent manner at 1, 10, and 25 μM. Moreover, these two compounds significantly decreased the secretion of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), cyclooxygenase-2 (COX-2), nuclear factor kappa-B (NF-κB/p65), and nitric-oxide synthase (iNOS) in LPS-activated RAW 264.7 cells.


Author(s):  
Krishna Chaithanya K ◽  
Gopalakrishnan V K ◽  
ZenebeHagos . ◽  
Nagaraju B ◽  
Kamalakararao K ◽  
...  

Objective: Mesuaferrea L is a medicinal plant belongs to the family Clusiace, it is extensively used in folk medicine for treatment of chronic inflammatory diseases.The present study was aimed to evaluate in vitro and in vivo anti-inflammatory activity of M. ferrea L. Methods: The in vitro anti-inflammatory activities such as nitric oxide, PGE2, pro-inflammatory cytokines (TNF-α and IL-1β) were studied in RAW 264.7 cells and in vivo studies were carried out on carrageenan -induced inflammation in Wistar rats. The sequentially extracted M. ferreaL bark extracts (MFBHE, MFBEE, and MFBME) exhibited inhibitory effects on pro-inflammatory mediators such as nitric oxide, prostaglandin E2, tumour necrosis factorαandinterleukin-1βproduction in concentration dependent manner in LPS induced RAW 264.7 cells andCarrageenan induced paw oedema in Wistar rats. Conclusion: The result of the present study indicated that M. ferrea L ethyl acetate bark extract exhibited significant in vitroand in vivoanti-inflammatory activity.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7393
Author(s):  
Jung-Hwan Kim ◽  
Tae-Jin Park ◽  
Jin-Soo Park ◽  
Min-Seon Kim ◽  
Won-Jae Chi ◽  
...  

Luteolin (LT), present in most plants, has potent anti-inflammatory properties both in vitro and in vivo. Furthermore, some of its derivatives, such as luteolin-7-O-glucoside, also exhibit anti-inflammatory activity. However, the molecular mechanisms underlying luteolin-3′-O-phosphate (LTP)-mediated immune regulation are not fully understood. In this paper, we compared the anti-inflammatory properties of LT and LTP and analyzed their molecular mechanisms of action; we obtained LTP via the biorenovation of LT. We investigated the anti-inflammatory activities of LT and LTP in macrophage RAW 264.7 cells. We confirmed from previously reported literature that LT inhibits the production of nitric oxide and prostaglandin E2, as well as the expression of inducible NO synthetase and cyclooxygenase-2. In addition, expressions of inflammatory genes and mediators, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, were suppressed. LTP showed anti-inflammatory activity similar to LT, but better anti-inflammatory activity in all the experiments, while also inhibiting mitogen-activated protein kinase and nuclear factor-kappa B more effectively than LT. At a concentration of 10 μM, LTP showed differences of 2.1 to 44.5% in the activity compared to LT; it also showed higher anti-inflammatory activity. Our findings suggest that LTP has stronger anti-inflammatory activity than LT.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Author(s):  
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.


Steroids ◽  
2021 ◽  
pp. 108830
Author(s):  
Xiaorui Cai ◽  
Fei Sha ◽  
Chuanyi Zhao ◽  
Zhiwei Zheng ◽  
Shulin Zhao ◽  
...  

Author(s):  
Chun Whan Choi ◽  
Ju Young Shin ◽  
Changon Seo ◽  
Seong Su Hong ◽  
Eun-Kyung Ahn ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


Sign in / Sign up

Export Citation Format

Share Document