scholarly journals An Atomistic-Based Nonlinear Plate Theory for Hexagonal Boron Nitride

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3113
Author(s):  
Kun Huang ◽  
Jiye Wu ◽  
Yajun Yin

Through the continuity of the DREIDING force field, we propose, for the first time, the finite-deformation plate theory for the single-layer hexagonal boron nitride (h-BN) to clarify the atomic source of the structure against deformations. Divergent from the classical Föppl-von Karman plate theory, our new theory shows that h-BN’s two in-plane mechanical parameters are independent of two out-of-plane mechanical parameters. The new theory reveals the relationships between the h-BN’s elastic rigidities and the atomic force field: (1) two in-plane elastic rigidities come from the bond stretching and the bond angle bending; (2) the bending rigidity comes from the inversion angle and the dihedral angle torsion; (3) the Gaussian rigidity only comes from the dihedral angle torsion. Mechanical parameters obtained by our theory align with atomic calculations. The new theory proves that two four-body terms in the DREIDING force field are necessary to model the h-BN’s mechanical properties. Overall, our theory establishes a foundation to apply the classical plate theory on the h-BN, and the approach in this paper is heuristic in modelling the mechanical properties of the other two-dimensional nanostructures.

2019 ◽  
Vol 8 (1) ◽  
pp. 210-217 ◽  
Author(s):  
Yingjing Liang ◽  
Hongfa Qin ◽  
Jianzhang Huang ◽  
Sha Huan ◽  
David Hui

Abstract Defects and temperature effects on the mechanical properties of hexagonal boron nitride sheet (h-BN) containing randomly distributed defects are investigated by molecular dynamics simulations and the reasons of the results are discussed. Results show that defect deteriorate the mechanical performance of BNNS. The mechanical properties are reduced by increasing percentage of vacancy defects including fracture strength, fracture strain and Young’s modulus. Simulations also indicate that the mechanical properties decrease with the temperature increasing. Moreover, defects affect the stable configuration at high temperature. With the percentage of defect increases the nanostructures become more and more unstable. Positions of the defect influent the mechanical properties. The higher the temperature and the percentage of defect are, the stronger the position of the randomly distributed defect affects the mechanical properties. The study provides a theoretical basis for the preparation and performance optimization of BNNSs.


2019 ◽  
Vol 7 (21) ◽  
pp. 6273-6278 ◽  
Author(s):  
Zichao Ma ◽  
Clarissa Prawoto ◽  
Zubair Ahmed ◽  
Ying Xiao ◽  
Lining Zhang ◽  
...  

Single layer etching of h-BN is achieved using a two-step remote plasma process.


Author(s):  
Roshan Lal ◽  
Rahul Saini

In this article, the effect of Pasternak foundation on free axisymmetric vibration of functionally graded circular plates subjected to mechanical in-plane force and a nonlinear temperature distribution (NTD) along the thickness direction has been investigated on the basis of classical plate theory. The plate material is graded in thickness direction according to a power-law distribution and its mechanical properties are assumed to be temperature-dependent (TD). At first, the equation for thermo-elastic equilibrium and then equation of motion for such a plate model have been derived by Hamilton's principle. Employing generalized differential quadrature rule (GDQR), the numerical values of thermal displacements and frequencies for clamped and simply supported plates vibrating in the first three modes have been computed. Values of in-plane force parameter for which the plate ceases to vibrate have been reported as critical buckling loads. The effect of temperature difference, material graded index, in-plane force, and foundation parameters on the frequencies has been analyzed. The benchmark results for uniform and linear temperature distributions (LTDs) have been computed. A study for plates made with the material having temperature-independent (TI) mechanical properties has also been performed as a special case. Comparison of results with the published work has been presented.


Nanoscale ◽  
2016 ◽  
Vol 8 (32) ◽  
pp. 15079-15085 ◽  
Author(s):  
A. La Torre ◽  
E. H. Åhlgren ◽  
M. W. Fay ◽  
F. Ben Romdhane ◽  
S. T. Skowron ◽  
...  

We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures on the step edges of hexagonal boron nitride flakes mediated by small iron clusters.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1652
Author(s):  
Nan Yang ◽  
Haifeng Ji ◽  
Xiaoxia Jiang ◽  
Xiongwei Qu ◽  
Xiaojie Zhang ◽  
...  

Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted boron nitride nanoplatelets, Lys@BNNP and Glu@BNNP, were successfully prepared via ball milling of h-BN with L-Lysine and L-Glutamic acid, respectively. It was found that the dispersion state of Lys@BNNP and Glu@BNNP in water had been effectively stabilized due to the introduction of amino acid moieties which contained a hydrophilic carboxyl group. PVA hydrogel composites with Lys@BNNP and Glu@BNNP as functional fillers were constructed and extensively studied. With 11.3 wt% Lys@BNNP incorporated, the thermal conductivity of Lys@BNNP/PVA hydrogel composite was up to 0.91 W m−1K−1, increased by 78%, comparing to the neat PVA hydrogel. Meanwhile, the mechanical and self-healing properties of the composites were simultaneously largely enhanced.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Yanming Wang ◽  
Peng Cai ◽  
Tingmei Wang ◽  
Qihua Wang

Tribological and mechanical properties of aramid fiber (AF), graphite (Gr), and hexagonal boron nitride (h-BN) hybrid polyimide composites were investigated under room and high temperature. Results show that, Gr in composite reinforced with AF and h-BN can reduce coefficient of friction (COF) and improve antiwear property of composites under room temperature. Gr can accelerate the formation of transfer film under high temperature without sacrificing the wear resistant of composites. Transfer film of composites reinforced with Gr and h-BN simultaneously present more smooth and uniform compared with that of composites reinforced with only AF and h-BN. However, under higher temperature, composite reinforced with pure Gr present higher COFs and wear rates (WRs) compared with composites filled with h-BN and Gr simultaneously. Comprehensively, composite filled with 10% AF, 3% h-BN, and 4% Gr is the optimum composition.


2013 ◽  
Vol 1 (4) ◽  
pp. 200-206 ◽  
Author(s):  
Jiangtao Wu ◽  
Baolin Wang ◽  
Yujie Wei ◽  
Ronggui Yang ◽  
Mildred Dresselhaus

Sign in / Sign up

Export Citation Format

Share Document