scholarly journals Effects of Consuming Preloads with Different Energy Density and Taste Quality on Energy Intake and Postprandial Blood Glucose

Nutrients ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 161 ◽  
Author(s):  
Siew Tey ◽  
Nurhazwani Salleh ◽  
Christiani Henry ◽  
Ciaran Forde
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
İsmail Mücahit Alptekin ◽  
Ece Erdoğan ◽  
Aylin İşler ◽  
Esma Cansu Yanalak ◽  
Funda Pınar Çakiroğlu ◽  
...  

Purpose Previous studies have reported that dietary fibers such as polydextrose and maltodextrin can reduce food intake; however, the studies on the differences of this effect are insufficient. The purpose of this paper is to compare the effects of dietary fibers maltodextrin and polydextrose on alterations of short-term satiety, energy intake and postprandial blood glucose in healthy females. Design/methodology/approach This study was designed as a randomized, crossover and double blind research. For this purpose, 21 healthy females consumed a milkshake containing 0 g (control), 15 g polydextrose (PDX) and 15 g maltodextrin (MDX), and an ad libitum lunch meal was served 150 min later. Subjective appetite scores (hunger, satiety, prospective food consumption and desire to eat) were measured using a visual analog scale. Appetite scores and blood glucose were measured before preload and once per 15 min after milkshake consumption. Findings Visual analog scale scores showed that PDX had an improved effect on satiety and hunger feelings. Compared to the control, dietary fiber increased the Area Under Curve (AUC) scores of satiety (p < 0.001) and decreased the AUC scores of hunger (p < 0.001), prospective food consumption (p < 0.001) and desire to eat (p < 0.001). Energy intake during ad libitum meal was significantly lower in PDX (Control: 862 (54.3) Kcal versus PDX: 679 (35.4) Kcal and MDX: 780 (49.3) Kcal. Moreover, the blood glucose levels were significantly lower in MDX. Originality/value This study conducted with healthy females demonstrated that PDX was more effective in inducing satiety during subsequent food intake, and that postprandial blood glucose were within more healthy levels in MDX.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 99 ◽  
Author(s):  
Rachel A. Elovaris ◽  
Penelope C. E. Fitzgerald ◽  
Vida Bitarafan ◽  
Sina S. Ullrich ◽  
Michael Horowitz ◽  
...  

Whey protein is rich in the branched-chain amino acids, L-leucine, L-isoleucine and L-valine. Thus, branched-chain amino acids may, at least in part, mediate the effects of whey to reduce energy intake and/or blood glucose. Notably, 10 g of either L-leucine or L-isoleucine, administered intragastrically before a mixed-nutrient drink, lowered postprandial blood glucose, and intraduodenal infusion of L-leucine (at a rate of 0.45 kcal/min, total: 9.9 g) lowered fasting blood glucose and reduced energy intake from a subsequent meal. Whether L-valine affects energy intake, and the gastrointestinal functions involved in the regulation of energy intake, as well as blood glucose, in humans, is currently unknown. We investigated the effects of intraduodenally administered L-valine on antropyloroduodenal pressures, plasma cholecystokinin, blood glucose and energy intake. Twelve healthy lean men (age: 29 ± 2 years, BMI: 22.5 ± 0.7 kg/m2) were studied on 3 separate occasions in randomised, double-blind order. Antropyloroduodenal pressures, plasma cholecystokinin, blood glucose, appetite perceptions and gastrointestinal symptoms were measured during 90-min intraduodenal infusions of L-valine at 0.15 kcal/min (total: 3.3 g) or 0.45 kcal/min (total: 9.9 g), or 0.9% saline (control). Energy intake from a buffet-meal immediately after the infusions was quantified. L-valine did not affect antral, pyloric (mean number; control: 14 ± 5; L-Val-0.15: 21 ± 9; L-Val-0.45: 11 ± 4), or duodenal pressures, plasma cholecystokinin (mean concentration, pmol/L; control: 3.1 ± 0.3; L-Val-0.15: 3.2 ± 0.3; L-Val-0.45: 3.0 ± 0.3), blood glucose, appetite perceptions, symptoms or energy intake (kcal; control: 1040 ± 73; L-Val-0.15: 1040 ± 81; L-Val-0.45: 1056 ± 100), at either load (p > 0.05 for all). In conclusion, intraduodenal infusion of L-valine, at loads that are moderately (3.3 g) or substantially (9.9 g) above World Health Organization valine requirement recommendations, does not appear to have energy intake- or blood glucose-lowering effects.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2697 ◽  
Author(s):  
Christina McVeay ◽  
Penelope C. E. Fitzgerald ◽  
Michael Horowitz ◽  
Christine Feinle-Bisset

The fatty acid, lauric acid (‘C12’), and the amino acid, tryptophan (‘Trp’), when given intraduodenally at loads that individually do not affect energy intake, have recently been shown to stimulate plasma cholecystokinin, suppress ghrelin and reduce energy intake much more markedly when combined. Both fatty acids and amino acids stimulate insulin secretion by distinct mechanisms; fatty acids enhance glucose-stimulated insulin secretion, while amino acids may have a direct effect on pancreatic β cells. Therefore, it is possible that, by combining these nutrients, their effects to lower blood glucose may be enhanced. We have investigated the potential for the combination of C12 and Trp to have additive effects to reduce blood glucose. To address this question, plasma concentrations of glucose, insulin and glucagon were measured in 16 healthy, lean males during duodenal infusions of saline (control), C12 (0.3 kcal/min), Trp (0.1 kcal/min), or C12+Trp (0.4 kcal/min), for 90 min. Both C12 and C12+Trp moderately reduced plasma glucose compared with control (p < 0.05). C12+Trp, but not C12 or Trp, stimulated insulin and increased the insulin-to-glucose ratio (p < 0.05). There was no effect on plasma glucagon. In conclusion, combined intraduodenal administration of C12 and Trp reduced fasting glucose in healthy men, and this decrease was driven primarily by C12. The effects of these nutrients on postprandial blood glucose and elevated fasting blood glucose in type 2 diabetes warrant evaluation.


2020 ◽  
Vol 318 (2) ◽  
pp. R263-R273 ◽  
Author(s):  
Vida Bitarafan ◽  
Penelope C. E. Fitzgerald ◽  
Tanya J. Little ◽  
Wolfgang Meyerhof ◽  
Karen L. Jones ◽  
...  

The rate of gastric emptying and the release of gastrointestinal (GI) hormones are major determinants of postprandial blood-glucose concentrations and energy intake. Preclinical studies suggest that activation of GI bitter-taste receptors potently stimulates GI hormones, including glucagon-like peptide-1 (GLP-1), and thus may reduce postprandial glucose and energy intake. We evaluated the effects of intragastric quinine on the glycemic response to, and the gastric emptying of, a mixed-nutrient drink and the effects on subsequent energy intake in healthy men. The study consisted of 2 parts: part A included 15 lean men, and part B included 12 lean men (aged 26 ± 2 yr). In each part, participants received, on 3 separate occasions, in double-blind, randomized fashion, intragastric quinine (275 or 600 mg) or control, 30 min before a mixed-nutrient drink ( part A) or before a buffet meal ( part B). In part A, plasma glucose, insulin, glucagon, and GLP-1 concentrations were measured at baseline, after quinine alone, and for 2 h following the drink. Gastric emptying of the drink was also measured. In part B, energy intake at the buffet meal was quantified. Quinine in 600 mg (Q600) and 275 mg (Q275) doses alone stimulated insulin modestly ( P < 0.05). After the drink, Q600 and Q275 reduced plasma glucose and stimulated insulin ( P < 0.05), Q275 stimulated GLP-1 ( P < 0.05), and Q600 tended to stimulate GLP-1 ( P = 0.066) and glucagon ( P = 0.073) compared with control. Quinine did not affect gastric emptying of the drink or energy intake. In conclusion, in healthy men, intragastric quinine reduces postprandial blood glucose and stimulates insulin and GLP-1 but does not slow gastric emptying or reduce energy intake under our experimental conditions.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 260
Author(s):  
Emad Al-Dujaili ◽  
Sophie Ashmore ◽  
Catherine Tsang

Background: The glycaemic index or load (GI or GL) is a concept for ranking carbohydrate-rich foods based on the postprandial blood glucose response compared with a reference food (glucose). Due to the limited research investigating the effect of the GI or GL of the diet on salivary steroidal hormones, this explorative short study was conducted. Methods: 12 female participants consumed a low GI and a high GI diet for three days each, followed by a washout period between each intervention. Saliva was collected at baseline, and following the low or high GI diets. Cortisol and testosterone concentrations were measured by enzyme-linked immuno-sorbent assay (ELISA). Results: GI and GL were significantly different between the low and high GI diets (p < 0.001). There was a small but significant increase in salivary cortisol after the high GI diet (7.38 to 10.93 ng/mL, p = 0.036). No effect was observed after the low GI diet. Higher levels of testosterone were produced after the low GI diet (83.7 to 125.9 pg/mL, p = 0.002), and no effect was found after the high GI diet. The total intake of calories consumed on the low GI diet was significantly lower compared to the high GI diet (p = 0.019). Conclusions: A low GI diet was associated with a small but significant increase in salivary testosterone, while a high GI diet increased cortisol levels. Altering the GI of the diet may influence overall energy intake and the health and wellbeing of female volunteers.


2001 ◽  
Vol 280 (2) ◽  
pp. R570-R576 ◽  
Author(s):  
Katherine Beckoff ◽  
Caroline G. MacIntosh ◽  
Ian M. Chapman ◽  
Judith M. Wishart ◽  
Howard A. Morris ◽  
...  

The aims of this study were to evaluate the effects of dietary glucose supplementation on gastric emptying (GE) of both glucose and fat, postprandial blood glucose homeostasis, and appetite in eight older subjects (4 males, 4 females, aged 65–84 yr). GE of a drink (15 ml olive oil and 33 g glucose dissolved in 185 ml water), blood glucose, insulin, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and appetite (diet diaries, visual analog scales, and food intake at a buffet meal consumed after the GE study) were evaluated twice, after 10 days on a standard or a glucose-supplemented diet (70 g glucose 3 times a day). Glucose supplementation accelerated GE of glucose ( P < 0.05), but not oil; there was a trend for an increase in GIP (at 15 min, P = 0.06), no change in GLP-1, an earlier insulin peak ( P < 0.01), and a subsequent reduction in blood glucose (at 75 min, P < 0.01). Glucose supplementation had no effect on food intake during each diet so that energy intake was greater ( P < 0.001) during the glucose-supplemented diet. Appetite ratings and energy intake at the buffet meal were not different. We conclude that, in older subjects, glucose supplementation 1) accelerates GE of glucose, but not fat; 2) modifies postprandial blood glucose homeostasis; and 3) increases energy intake.


2006 ◽  
Vol 95 (6) ◽  
pp. 1127-1133 ◽  
Author(s):  
Elizabeth J. Simpson ◽  
Michelle Holdsworth ◽  
Ian A. Macdonald

Reactive hypoglycaemia (RH) is a condition that has been popularised in the media and lay literature, particularly that targeting women, over the past 30 years. The objective of the present study was to investigate whether a non-patient group reporting symptoms that they attributed to a low blood glucose level would demonstrate biochemical hypoglycaemia when symptomatic and whether their habitual diet and activity level differed from those of controls. Thirty non-obese, healthy women (aged 19–45 years) reporting symptoms more than once a week that they attributed to hypoglycaemia (RH group), and eighteen controls, measured their finger-prick blood glucose level 3h after breakfast and lunch, and recorded their diet and activity daily for 7d. The RH group also measured their blood glucose when symptoms were being experienced. Symptoms less than 4h after eating were classed as postprandial. The mean postprandial blood glucose level in the RH group when asymptomatic (4·66 (sem 0·08) mmol/l) was significantly lower than that of controls (5·05 (sem 0·11) mmol/l; P<0·01). Symptoms occurred 2·6 (sem 0·13) h after eating, at a lower blood glucose level (4·18 (sem 0·10) mmol/l; P<0·001) than when the women were asymptomatic. On symptomatic days, the RH group were more physically active than the controls (1·64 (sem 0·04) v. 1·50 (sem 0·03) multiples of resting energyexpenditure; P<0·05), with a lower energy intake (7901 (sem 311) et al.. 9332 (sem 227) kJ; P<0·001). In conclusion, subjects reporting symptoms they associated with hypoglycaemia generally did not demonstrate biochemical hypoglycaemia but did have significantly lower blood glucose levels than controls. Higher physical activity and a failure to match energy intake to estimated energy requirement may be important in the aetiology of symptoms.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Grace Farhat ◽  
Lauren Moore ◽  
Inaki Moya ◽  
Lindsay Hall ◽  
Victoria Berset

AbstractNon-nutritive sweeteners (NNS) are suggested to reduce sugar and energy content of diet, but there is growing evidence that they can exacerbate obesity and diabetes through increasing appetite and energy intake. Stevia (stevioside extract), a natural sweetener, is being increasingly consumed, yet limited studies have looked at their effects on satiety and energy intake. The aim of this study is to investigate the effects of preloads of stevia on food intake, satiety and postprandial blood glucose levels when compared to water and sugar. Thirty participants (10 males/20 females; 26 ± 10.5 years; BMI: 23.44 ± 3.42 Kg/m2) took part in a three-arm single-blinded crossover trial. On separate test days, they received three different preloads (300 ml) containing water, sugar (60g) and stevia (1g) followed by an ad-libitum pizza lunch after 30 minutes. Breakfast was standardized. Blood glucose samples were collected before preload and lunch, and then at 30-minute intervals until 120 min post lunch. Volunteers recorded their feelings of satiety and hunger on visual analogue scales (VAS) before preload and after meal intake. A one-day diet diary was collected for each test day. Data was analysed using repeated measures ANOVA (SPSS Inc., Chicago, IL, USA). Despite the difference in energy content between preloads, there were no significant differences in energy intake at lunch between the three interventions (F (2, 56) = 0.25, p = 0.78). Furthermore, participants did not compensate by consuming more energy during the day after the stevia preload (1660 ± 584 Kcal) compared to sugar preload (1770 ± 763 Kcal, p = 0.82). There were no significant differences in VAS scores between stevia and sugar preloads, but participants scored significantly higher rates of hunger (before and after lunch) and desire to eat (before lunch) following water preload (p < 0.05). No significant differences between water, sugar and stevia were noted for postprandial glucose levels (120 min post lunch) when adjusted from baseline (F (2, 58) = 2.56, p = 0.09). Area under the curve (AUC) for glucose did not differ between water and stevia (p = 0.2). Results are in line with several clinical trials showing that the consumption of sweeteners does not lead to an increase in hunger and energy intake, and could therefore present a useful strategy to assist with weight loss. Further studies looking at long-term effects of stevia on weight regulation are needed to support these findings.


Sign in / Sign up

Export Citation Format

Share Document