scholarly journals Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1383 ◽  
Author(s):  
Ziyi Song ◽  
Alus Xiaoli ◽  
Fajun Yang

De novo lipogenesis (DNL) is a complex and highly regulated process in which carbohydrates from circulation are converted into fatty acids that are then used for synthesizing either triglycerides or other lipid molecules. Dysregulation of DNL contributes to human diseases such as obesity, type 2 diabetes, and cardiovascular diseases. Thus, the lipogenic pathway may provide a new therapeutic opportunity for combating various pathological conditions that are associated with dysregulated lipid metabolism. Hepatic DNL has been well documented, but lipogenesis in adipocytes and its contribution to energy homeostasis and insulin sensitivity are less studied. Recent reports have gained significant insights into the signaling pathways that regulate lipogenic transcription factors and the role of DNL in adipose tissues. In this review, we will update the current knowledge of DNL in white and brown adipose tissues with the focus on transcriptional, post-translational, and central regulation of DNL. We will also summarize the recent findings of adipocyte DNL as a source of some signaling molecules that critically regulate energy metabolism.

2019 ◽  
Vol 20 (19) ◽  
pp. 4924 ◽  
Author(s):  
Lee ◽  
Park ◽  
Oh ◽  
Lee ◽  
Kim ◽  
...  

: Mitochondria play a key role in maintaining energy homeostasis in metabolic tissues, including adipose tissues. The two main types of adipose tissues are the white adipose tissue (WAT) and the brown adipose tissue (BAT). WAT primarily stores excess energy, whereas BAT is predominantly responsible for energy expenditure by non-shivering thermogenesis through the mitochondria. WAT in response to appropriate stimuli such as cold exposure and β-adrenergic agonist undergoes browning wherein it acts as BAT, which is characterized by the presence of a higher number of mitochondria. Mitochondrial dysfunction in adipocytes has been reported to have strong correlation with metabolic diseases, including obesity and type 2 diabetes. Dysfunction of mitochondria results in detrimental effects on adipocyte differentiation, lipid metabolism, insulin sensitivity, oxidative capacity, and thermogenesis, which consequently lead to metabolic diseases. Recent studies have shown that mitochondrial function can be improved by using thiazolidinedione, mitochondria-targeted antioxidants, and dietary natural compounds; by performing exercise; and by controlling caloric restriction, thereby maintaining the metabolic homeostasis by inducing adaptive thermogenesis of BAT and browning of WAT. In this review, we focus on and summarize the molecular regulation involved in the improvement of mitochondrial function in adipose tissues so that strategies can be developed to treat metabolic diseases.


2019 ◽  
Vol 8 (6) ◽  
pp. 854 ◽  
Author(s):  
Min-Woo Lee ◽  
Mihye Lee ◽  
Kyoung-Jin Oh

Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues—the white adipose tissue (WAT) and brown adipose tissue (BAT)—secrete bioactive peptides and proteins, known as “adipokines” and “batokines,” respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, “exosomal microRNAs (miRNAs)” were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors—adipokines, batokines, and exosomal miRNA—in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.


2015 ◽  
Vol 112 (37) ◽  
pp. 11630-11635 ◽  
Author(s):  
Yan Wang ◽  
Markey C. McNutt ◽  
Serena Banfi ◽  
Michael G. Levin ◽  
William L. Holland ◽  
...  

Angiopoietin-like protein 3 (ANGPTL3) is a circulating inhibitor of lipoprotein and endothelial lipase whose physiological function has remained obscure. Here we show that ANGPTL3 plays a major role in promoting uptake of circulating very low density lipoprotein-triglycerides (VLDL-TGs) into white adipose tissue (WAT) rather than oxidative tissues (skeletal muscle, heart brown adipose tissue) in the fed state. This conclusion emerged from studies of Angptl3−/− mice. Whereas feeding increased VLDL-TG uptake into WAT eightfold in wild-type mice, no increase occurred in fed Angptl3−/− animals. Despite the reduction in delivery to and retention of TG in WAT, fat mass was largely preserved by a compensatory increase in de novo lipogenesis in Angptl3−/− mice. Glucose uptake into WAT was increased 10-fold in KO mice, and tracer studies revealed increased conversion of glucose to fatty acids in WAT but not liver. It is likely that the increased uptake of glucose into WAT explains the increased insulin sensitivity associated with inactivation of ANGPTL3. The beneficial effects of ANGPTL3 deficiency on both glucose and lipoprotein metabolism make it an attractive therapeutic target.


2020 ◽  
Vol 13 ◽  
pp. 117864692093868
Author(s):  
Niklas Joisten ◽  
David Walzik ◽  
Alan J Metcalfe ◽  
Wilhelm Bloch ◽  
Philipp Zimmer

Emerging evidence highlights the substantial role of the kynurenine pathway in various physiological systems and pathological conditions. Physical exercise has been shown to impact the kynurenine pathway in response to both single (acute) and multiple (chronic) exercise training stimuli. In this perspective article, we briefly outline the current knowledge concerning exercise-induced modulations of the kynurenine pathway and discuss underlying mechanisms. Furthermore, we expose the potential involvement of exercise-induced kynurenine pathway modulations on energy homeostasis (eg, through de novo synthesis of NAD+) and finally suggest how these modulations may contribute to exercise-induced benefits in the prevention and treatment of chronic diseases.


2019 ◽  
Vol 40 (4) ◽  
pp. 1092-1107 ◽  
Author(s):  
Julian M Yabut ◽  
Justin D Crane ◽  
Alexander E Green ◽  
Damien J Keating ◽  
Waliul I Khan ◽  
...  

Abstract Serotonin is a phylogenetically ancient biogenic amine that has played an integral role in maintaining energy homeostasis for billions of years. In mammals, serotonin produced within the central nervous system regulates behavior, suppresses appetite, and promotes energy expenditure by increasing sympathetic drive to brown adipose tissue. In addition to these central circuits, emerging evidence also suggests an important role for peripheral serotonin as a factor that enhances nutrient absorption and storage. Specifically, glucose and fatty acids stimulate the release of serotonin from the duodenum, promoting gut peristalsis and nutrient absorption. Serotonin also enters the bloodstream and interacts with multiple organs, priming the body for energy storage by promoting insulin secretion and de novo lipogenesis in the liver and white adipose tissue, while reducing lipolysis and the metabolic activity of brown and beige adipose tissue. Collectively, peripheral serotonin acts as an endocrine factor to promote the efficient storage of energy by upregulating lipid anabolism. Pharmacological inhibition of serotonin synthesis or signaling in key metabolic tissues are potential drug targets for obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).


2004 ◽  
Vol 52 (Suppl 1) ◽  
pp. S122.6-S123
Author(s):  
M. Garg ◽  
C. Bell ◽  
L. Rogers ◽  
S. Bassilian ◽  
W. N.P. Lee

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


2021 ◽  
Vol 10 (11) ◽  
pp. 2501
Author(s):  
Angelo Cignarelli ◽  
Valentina Annamaria Genchi ◽  
Rossella D’Oria ◽  
Fiorella Giordano ◽  
Irene Caruso ◽  
...  

Erectile dysfunction (ED) is a long-term complication of type 2 diabetes (T2D) widely known to affect the quality of life. Several aspects of altered metabolism in individuals with T2D may help to compromise the penile vasculature structure and functions, thus exacerbating the imbalance between smooth muscle contractility and relaxation. Among these, advanced glycation end-products and reactive oxygen species derived from a hyperglycaemic state are known to accelerate endothelial dysfunction by lowering nitric oxide bioavailability, the essential stimulus of relaxation. Although several studies have explained the pathogenetic mechanisms involved in the generation of erectile failure, few studies to date have described the efficacy of glucose-lowering medications in the restoration of normal sexual activity. Herein, we will present current knowledge about the main starters of the pathophysiology of diabetic ED and explore the role of different anti-diabetes therapies in the potential remission of ED, highlighting specific pathways whose activation or inhibition could be fundamental for sexual care in a diabetes setting.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1822
Author(s):  
Christian von Loeffelholz ◽  
Sina M. Coldewey ◽  
Andreas L. Birkenfeld

5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1310
Author(s):  
Maria Rosaria Carillo ◽  
Carla Bertapelle ◽  
Filippo Scialò ◽  
Mario Siervo ◽  
Gianrico Spagnuolo ◽  
...  

L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids, including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial β-oxidation. In addition, L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative diseases provide a powerful platform to both unravel the molecular pathways that contribute to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize L-carnitine, and its carnitine transport system is similar to the human transport system; moreover, evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the hypothesis of the occurrence of β-oxidation in glial cells. Hence, Drosophila models could advance the understanding of the links between L-carnitine and the development of neurodegenerative disorders. This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of the L-carnitine pathway in fly models of neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document