scholarly journals Iron Supplements Containing Lactobacillus plantarum 299v Increase Ferric Iron and Up-regulate the Ferric Reductase DCYTB in Human Caco-2/HT29 MTX Co-Cultures

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1949 ◽  
Author(s):  
Ann-Sofie Sandberg ◽  
Gunilla Önning ◽  
Niklas Engström ◽  
Nathalie Scheers

Several human interventions have indicated that Lactobacillus plantarum 299v (L. plantarum 299v) increases intestinal iron absorption. The aim of the present study was to investigate possible effects of L. plantarum 299v on the mechanisms of iron absorption on the cellular level. We have previously shown that lactic fermentation of vegetables increased iron absorption in humans. It was revealed that the level of ferric iron [Fe (H2O)5]2+ was increased after fermentation. Therefore, we used voltammetry to measure the oxidation state of iron in simulated gastrointestinal digested oat and mango drinks and capsule meals containing L. plantarum 299v. We also exposed human intestinal co-cultures of enterocytes and goblet cells (Caco-2/HT29 MTX) to the supplements in order to study the effect on proteins possibly involved (MUC5AC, DCYTB, DMT1, and ferritin). We detected an increase in ferric iron in the digested meals and drinks containing L. plantarum 299v. In the intestinal cell model, we observed that the ferric reductase DCYTB increased in the presence of L. plantarum 299v, while the production of mucin (MUC5AC) decreased independently of L. plantarum 299v. In conclusion, the data suggest that the effect of L. plantarum 299v on iron metabolism is mediated through driving the Fe3+/DCYTB axis.

2021 ◽  
Vol 351 ◽  
pp. 89-98
Author(s):  
Océane Reale ◽  
Dorina Bodi ◽  
Antoine Huguet ◽  
Valérie Fessard

2018 ◽  
Vol 54 (4) ◽  
pp. 1256-1264 ◽  
Author(s):  
Elisabeth A. A. O'Flaherty ◽  
Paraskevi Tsermoula ◽  
Eileen E. O'Neill ◽  
Nora M. O'Brien

Parasitology ◽  
1975 ◽  
Vol 70 (2) ◽  
pp. 223-229 ◽  
Author(s):  
E. Michael

The fine structure of trophozoites, schizonts, merozoites and macrogamonts of Eimeria acervulina found in goblet cells of the duodenal epithelium of chicks is described and compared with the corresponding stages formed in other epithelial cells. Complete schizogony, with the formation of mature merozoites, occurred freely in goblet cells. Developing macrogamonts (but no microgamonts) were rarely found in goblet cells. The stages observed were confined to the cytoplasm of the host cell above the Golgi apparatus and were usually seen between the mucous granules. The stages seen appeared normal, and contained similar structures to corresponding stages developing in other cells. The finding of developing stages of E. acervulina in goblet cells provides further evidence that site specificity of Eimeria at the cellular level is not as strict as previously thought.


1993 ◽  
Vol 13 (7) ◽  
pp. 4342-4350
Author(s):  
D G Roman ◽  
A Dancis ◽  
G J Anderson ◽  
R D Klausner

We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease.


2018 ◽  
pp. 78-81
Author(s):  
V. E. Zhorova ◽  
E. G. Khilkevich

Iron deficiency anaemia (IDA) is one of the most common complications in pregnancy. It is known that IDA has an adverse effect on the condition of the mother, fetus and new-borns. The article presents modern views of the aetiology, pathogenesis, prevalence of iron deficiency anaemia, describes the clinical manifestations of this condition. The rational of treatment of IDA with modern ferric iron supplements is substantiated. It is shown that IDA therapy in pregnant and puerperal women with Maltofer is highly effective, leads to normalization of hemogram parameters, improvement of general condition, and reduction of obstetric and neonatal complications.


Blood ◽  
2015 ◽  
Vol 126 (17) ◽  
pp. 1981-1989 ◽  
Author(s):  
Diego Moretti ◽  
Jeroen S. Goede ◽  
Christophe Zeder ◽  
Markus Jiskra ◽  
Vaiya Chatzinakou ◽  
...  

Key Points Iron supplements at doses of 60 mg Fe as FeSO4 or higher increase hepcidin for up to 24 hours and are associated with lower iron absorption on the following day. The soluble transferrin receptor/ferritin ratio and hepcidin are equivalent predictors of iron absorption from supplements.


2018 ◽  
Vol 4 (1) ◽  
pp. 251-254 ◽  
Author(s):  
María Hernández Mesa ◽  
Nicolas Pilia ◽  
Olaf Dössel ◽  
Stefano Severi ◽  
Axel Loewe

AbstractPatients suffering from end stage of chronic kidney disease (CKD) often undergo haemodialysis to normalize the electrolyte concentrations. Moreover, cardiovascular disease (CVD) is the main cause of death in CKD patients. To study the connection between CKD and CVD, we investigated the effects of an electrolyte variation on cardiac signals (action potential and ECG) using a computational model. In a first step, simulations with the Himeno et al. ventricular cell model were performed on cellular level with different extracellular sodium ([Na+]o), calcium ([Ca2+]o) and potassium ([K+]o) concentrations as occurs in CKD patients. [Ca2+]o and [K+]o changes caused variations in different features describing the morphology of the AP. Changes due to a [Na+]o variation were not as prominent. Simulations with [Ca2+]o variations were also carried out on ventricular ECG level and a 12-lead ECG was computed. Thus, a multiscale simulator from ion channel to ECG reproducing the calcium-dependent inactivation of ICaL was achieved. The results on cellular and ventricular level agree with results from literature. Moreover, we suggest novel features representing electrolyte changes that have not been described in literature. These results could be helpful for further studies aiming at the estimation of ionic concentrations based on ECG recordings.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5989
Author(s):  
Paolo Pastore ◽  
Marco Roverso ◽  
Erik Tedesco ◽  
Marta Micheletto ◽  
Etienne Mantovan ◽  
...  

Iron is a fundament micronutrient, whose homeostasis is strictly regulated. Iron deficiency anemia is among the most widespread nutritional deficiencies and its therapy, based on dietary supplement and drugs, may lead to severe side effects. With the aim of improving iron bioavailability while reducing iron oral therapy side effects, novel dietary supplements based on innovative technologies—microencapsulation, liposomes, sucrosomes—have been produced and marketed. In the present work, six iron dietary supplements for different therapeutic targets were compared in terms of bioaccessibility, bioavailability, and safety by using an integrated in vitro approach. For general-purpose iron supplements, ME + VitC (microencapsulated) showed a fast, burst intestinal iron absorption kinetic, which maintained iron bioavailability and ferritin expression constant over time. SS + VitC (sucrosomes), on the other side, showed a slower, time-dependent iron absorption and ferritin expression trend. ME + Folate (microencapsulated) showed a behavior similar to that of ME + VitC, albeit with a lower bioavailability. Among pediatric iron supplements, a time-dependent bioavailability increase was observed for LS (liposome), while PIC (polydextrose-iron complex) bioavailability is severely limited by its poor bioaccessibility. Finally, except for SS + VitC, no adverse effects on intestinal mucosa vitality and barrier integrity were observed. Considering obtained results and the different therapeutic targets, microencapsulation-based formulations are endowed with better performance compared to the other formulations. Furthermore, performances of microencapsulated products were obtained with a lower iron daily dose, limiting the potential onset of side effects.


Sign in / Sign up

Export Citation Format

Share Document