scholarly journals The Efficacy of Polyunsaturated Fatty Acids as Protectors against Calcium Oxalate Renal Stone Formation: A Review

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1069
Author(s):  
Allen L. Rodgers ◽  
Roswitha Siener

In the pathogenesis of hypercalciuria and hyperoxaluria, n-6 polyunsaturated fatty acids (PUFAs) have been implicated by virtue of their metabolic links with arachidonic acid (AA) and prostaglandin PGE2. Studies have also shown that n-3 PUFAs, particularly those in fish oil—eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—can serve as competitive substrates for AA in the n-6 series and can be incorporated into cell membrane phospholipids in the latter’s place, thereby reducing urinary excretions of calcium and oxalate. The present review interrogates several different types of study which address the question of the potential roles played by dietary PUFAs in modulating stone formation. Included among these are human trials that have investigated the effects of dietary PUFA interventions. We identified 16 such trials. Besides fish oil (EPA+DHA), other supplements such as evening primrose oil containing n-6 FAs linoleic acid (LA) and γ-linolenic acid (GLA) were tested. Urinary excretion of calcium or oxalate or both decreased in most trials. However, these decreases were most prominent in the fish oil trials. We recommend the administration of fish oil containing EPA and DHA in the management of calcium oxalate urolithiasis.

1996 ◽  
Vol 271 (4) ◽  
pp. H1483-H1490 ◽  
Author(s):  
K. E. Anderson ◽  
X. J. Du ◽  
A. J. Sinclair ◽  
E. A. Woodcock ◽  
A. M. Dart

Dietary enrichment with fish oil-derived n-3 polyunsaturated fatty acids has been shown to suppress the arrhythmias that occur during postischemic reperfusion. We have recently implicated a rapid release of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] during postischemic reperfusion in the generation of these arrhythmias. The effects of dietary supplementation with fish oil on both cardiac Ins(1,4,5)P3 and arrhythmogenic responses to reperfusion were therefore investigated in perfused rat hearts. Comparisons were made with control and n-6 polyunsaturated or saturated fat-supplemented diets. In control hearts, reperfusion increased Ins(1,4,5)P3 levels [from 9 +/- 2 at 20 min ischemia to 26 +/- 3 counts per minute (cpm)/mg protein with 2 min of reperfusion] and produced a high incidence of ventricular tachycardia (92% VT) and ventricular fibrillation (85% VF). Dietary fish oil supplementation, which increased composition of n-3 fatty acids in myocardial membrane phospholipids, prevented the reperfusion-induced rise in Ins(1,4,5)P3 (11 +/- 1 at 20 min ischemia and 12 +/- 2 cpm/mg protein after 2-min reperfusion) and significantly suppressed reperfusion arrhythmias (38% VT, 13% VF; P < 0.01 vs. control group). Thus the inhibition of reperfusion-induced rises in Ins(1,4,5)P3 by n-3 polyunsaturated fatty acids after dietary fish oil supplementation provides a possible mechanism for the inhibitory effect of n-3 fatty acids on reperfusion-induced arrhythmias.


2008 ◽  
Vol 294 (3) ◽  
pp. R1044-R1052 ◽  
Author(s):  
Thomas Ruf ◽  
Walter Arnold

Polyunsaturated fatty acids (PUFAs) can have strong effects on hibernation and daily torpor in mammals. High dietary PUFA contents were found to increase proneness for torpor, decrease body temperatures, prolong torpor bout duration, and attenuate hibernation mass loss. The mechanism by which PUFAs enhance torpor and hibernation is unknown, however. On the basis of a review of the literature, and on reexamining our own data on alpine marmots, we propose that effects on hibernation are not due to PUFAs in general, but to shifts in the ratio of n-6 PUFAs to n-3 PUFAs in membrane phospholipids. Specifically, high ratios of n-6 to n-3 PUFAs increase the activity of the Ca2+-Mg2+ pump in the sarcoplasmic reticulum of the heart (SERCA) and counteract Q10 effects on SERCA activity at low tissue temperatures. Therefore, high n-6 to n-3 PUFA ratios in cardiac myocyte membranes appear to protect the hibernating heart from arrhythmia, which in hypothermic nonhibernators is caused by massive increases in cytosolic Ca2+. The resulting reduced risk of cardiac arrest during hypothermia may explain why increased dietary uptake of n-6 PUFAs, but not of n-3 PUFAs, can strongly enhance the propensity for hibernation, and allows heterotherms to reach lower body temperatures, with associated increased energy savings. Therefore, at least for herbivorous hibernators, such as marmots, linoleic acid (C18:2 n-6)—the dietary source of all n-6 PUFAs—appears to represent a crucial and limited resource in natural environments.


1993 ◽  
Vol 71 (9) ◽  
pp. 707-712 ◽  
Author(s):  
John E. Van Aerde ◽  
M. T. Clandinin

It is uncertain whether preterm infants can synthesize C20 and C22 (ω−6) and (ω−3) fatty acids required for structural lipids. Dietary intake of CI8:2ω−6 and C18:3ω−3 in formulae lacking long-chain polyunsaturated fatty acids can result in reduced levels of C20 and C22 homologues in membrane phospholipids as compared with breast-fed infants. Supplementation of fish oil has been shown to alleviate this problem in part only, as synthesis and incorporation of arachidonic acid into membrane phospholipids is reduced. Presently, infant formulae do not contain C20 and C22 fatty acids. Feeding an experimental infant formula with a balance between C20 and C22 (ω−6) and (ω−3) fatty acids within the range of human milk results in plasma phospholipid levels of C20 and C22 long-chain polyunsaturated (ω−6) and (ω−3) fatty acids similar to those in breast-fed infants. On the basis of clinical studies and evolutionary data, an increase of the linolenic and a decrease of the linoleic acid content in infant formula are suggested. Balanced incorporation of both (ω−6) and (ω−3) long-chain polyunsaturated fatty acids seems advisable in view of the lack of knowledge concerning the neonate's ability to chain elongate and desaturate essential fatty acids. Recommendations for the essential fatty acid content of preterm infant formula are suggested.Key words: essential fatty acids, long-chain polyunsaturated fatty acids, infant formula, fish oil, desaturation.


2018 ◽  
Vol 19 (12) ◽  
pp. 3703 ◽  
Author(s):  
Akshay Goel ◽  
Naga Pothineni ◽  
Mayank Singhal ◽  
Hakan Paydak ◽  
Tom Saldeen ◽  
...  

Fish and commercially available fish oil preparations are rich sources of long-chain omega-3 polyunsaturated fatty acids. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the most important fatty acids in fish oil. Following dietary intake, these fatty acids get incorporated into the cell membrane phospholipids throughout the body, especially in the heart and brain. They play an important role in early brain development during infancy, and have also been shown to be of benefit in dementia, depression, and other neuropsychiatric disorders. Early epidemiologic studies show an inverse relationship between fish consumption and the risk of coronary heart disease. This led to the identification of the cardioprotective role of these marine-derived fatty acids. Many experimental studies and some clinical trials have documented the benefits of fish oil supplementation in decreasing the incidence and progression of atherosclerosis, myocardial infarction, heart failure, arrhythmias, and stroke. Possible mechanisms include reduction in triglycerides, alteration in membrane fluidity, modulation of cardiac ion channels, and anti-inflammatory, anti-thrombotic, and anti-arrhythmic effects. Fish oil supplements are generally safe, and the risk of toxicity with methylmercury, an environmental toxin found in fish, is minimal. Current guidelines recommend the consumption of either one to two servings of oily fish per week or daily fish oil supplements (around 1 g of omega-3 polyunsaturated fatty acids per day) in adults. However, recent large-scale studies have failed to demonstrate any benefit of fish oil supplements on cardiovascular outcomes and mortality. Here, we review the different trials that evaluated the role of fish oil in cardiovascular diseases.


2014 ◽  
Vol 45 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Hai-Ning Yu ◽  
Jing Zhu ◽  
Wen-sheng Pan ◽  
Sheng-Rong Shen ◽  
Wei-Guang Shan ◽  
...  

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769501 ◽  
Author(s):  
Isha Rani ◽  
Bhoomika Sharma ◽  
Sandeep Kumar ◽  
Satinder Kaur ◽  
Navneet Agnihotri

5-Fluorouracil has been considered as a cornerstone therapy for colorectal cancer; however, it suffers from low therapeutic response rate and severe side effects. Therefore, there is an urgent need to increase the clinical efficacy of 5-fluorouracil. Recently, fish oil rich in n-3 polyunsaturated fatty acids has been reported to chemosensitize tumor cells to anti-cancer drugs. This study is designed to understand the underlying mechanisms of synergistic effect of fish oil and 5-fluorouracil by evaluation of tumor cell–associated markers such as apoptosis and DNA damage. The colon cancer was developed by administration of N,N-dimethylhydrazine dihydrochloride and dextran sulfate sodium salt. Further these animals were treated with 5-fluorouracil, fish oil, or a combination of both. In carcinogen-treated animals, a decrease in DNA damage and apoptotic index was observed. There was also a decrease in the expression of Fas, FasL, caspase 8, and Bax, and an increase in Bcl-2. In contrast, administration of 5-fluorouracil and fish oil as an adjuvant increased both DNA damage and apoptotic index by activation of both extrinsic and intrinsic apoptotic pathways as compared to the other groups. The increased pro-apoptotic effect by synergism of 5-fluorouracil and fish oil may be attributed to the incorporation of n-3 polyunsaturated fatty acids in membrane, which alters membrane fluidity in cancer cells. In conclusion, this study highlights that the induction of apoptotic pathway by fish oil may increase the susceptibility of tumors to chemotherapeutic regimens.


2011 ◽  
Vol 102 (14) ◽  
pp. 7154-7158 ◽  
Author(s):  
Jinyong Yan ◽  
Sanxiong Liu ◽  
Jiang Hu ◽  
Xiaohua Gui ◽  
Guilong Wang ◽  
...  

1994 ◽  
Vol 86 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Bruno Baggio ◽  
Giovanni Gambaro ◽  
Francesco Marchini ◽  
Massimo Vincenti ◽  
Giulio Ceolotto ◽  
...  

1. Anomalous transmembrane anion transport has been observed in erythrocytes of patients with idiopathic calcium nephrolithiasis. 2. To verify whether cation transport is also abnormal, we investigated the frusemide-sensitive Na+ efflux from Na+-loaded erythrocytes and the natriuretic response to acute intravenous frusemide administration in calcium oxalate renal stone formers. 3. Frusemide administration induced a statistically significant smaller increase in the fractional excretion of Na+ in patients than in control subjects. Abnormal kinetic properties of erythrocyte Na+-K+-2Cl− co-transport were observed in approximately 60% of stone formers. The Km for Na+ of Na+-K+-2Cl− co-transport correlated with urinary Ca2+ excretion. 4. The abnormal kinetic properties of Na+-K+-2Cl− co-transport may be relevant for stone formation, hampering renal Ca2+ reabsorption in the distal nephron and determining critical physicochemical conditions for calcium/oxalate crystallization.


2008 ◽  
Vol 138 (5) ◽  
pp. 889-896 ◽  
Author(s):  
Eun J. Kim ◽  
Sharon A. Huws ◽  
Michael R. F. Lee ◽  
Jeff D. Wood ◽  
Stefan M. Muetzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document