scholarly journals Dietary Fibres Differentially Impact on the Production of Phenolic Acids from Rutin in an In Vitro Fermentation Model of the Human Gut Microbiota

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1577 ◽  
Author(s):  
Jaroslav Havlik ◽  
Vittoria Marinello ◽  
Andrew Gardyne ◽  
Min Hou ◽  
William Mullen ◽  
...  

Polyphenols are often ingested alongside dietary fibres. They are both catabolised by, and may influence, the intestinal microbiota; yet, interactions between them and the impact on their resultant microbial products are poorly understood. Dietary fibres (inulin, pectin, psyllium, pyrodextrin, wheat bran, cellulose—three doses) were fermented in vitro with human faeces (n = 10) with and without rutin (20 µg/mL), a common dietary flavonol glycoside. Twenty-eight phenolic metabolites and short chain fatty acids (SCFA) were measured over 24 h. Several phenolic metabolites were produced during fibre fermentation, without rutin. With rutin, 3,4-dihydroxyphenylacetic acid (3,4diOHPAA), 3-hydroxyphenylacetic acid (3OHPAA), 3-(3 hydroxyphenyl)propionic acid (3OHPPA) and 3-(3,4-dihydroxyphenyl)propionic acid (3,4diOHPPA; DOPAC) were produced, with 3,4diOHPAA the most abundant, confirmed by fermentation of 13C labelled quercetin. The addition of inulin, wheat bran or pyrodextrin increased 3,4diOHPAA 2 2.5-fold over 24 h (p < 0.05). Rutin affected SCFA production, but this depended on fibre, fibre concentration and timepoint. With inulin, rutin increased pH at 6 h from 4.9 to 5.6 (p = 0.01) but increased propionic, butyric and isovaleric acid (1.9, 1.6 and 5-fold, p < 0.05 at 24 h). Interactions between fibre and phenolics modify production of phenolic acids and SCFA and may be key in enhancing health benefits.

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 938
Author(s):  
Jennifer Joan Ryan ◽  
Andrea Monteagudo-Mera ◽  
Nikhat Contractor ◽  
Glenn R. Gibson

Intestinal dysbiosis has been described in patients with certain gastrointestinal conditions including irritable bowel syndrome (IBS) and ulcerative colitis. 2′-fucosyllactose (2′-FL), a prebiotic human milk oligosaccharide, is considered bifidogenic and butyrogenic. To assess prebiotic effects of 2′-FL, alone or in combination with probiotic strains (potential synbiotics), in vitro experiments were conducted on stool from healthy, IBS, and ulcerative colitis adult donors. In anaerobic batch culture fermenters, Bifidobacterium and Eubacterium rectale-Clostridium coccoides counts, and short-chain fatty acids (SCFAs) including butyrate increased during fermentation with 2′-FL and some of the 2′-FL/probiotic combinations. In a subsequent open-label pilot trial, the effect of a 2′-FL-containing nutritional formula was evaluated in twelve adults with IBS or ulcerative colitis. Gastrointestinal Quality of Life Index (GIQLI) total and gastrointestinal symptoms domain scores, stool counts of Bifidobacterium and Faecalibacterium prausnitzii, and stool SCFAs including butyrate, increased after six weeks of intervention. Consistent with documented effects of 2′-FL, the batch culture fermentation experiments demonstrated bifidogenic and butyrogenic effects of 2′-FL during fermentation with human stool samples. Consumption of the 2′-FL-containing nutritional formula by adults with IBS or ulcerative colitis was associated with improvements in intra- and extra-intestinal symptoms, and bifidogenic and butyrogenic effects.


2016 ◽  
Vol 7 (4) ◽  
pp. 1805-1813 ◽  
Author(s):  
Junyi Yang ◽  
Devin J. Rose

A diet high in whole grains, dry beans, and certain vegetables that contributed dietary fiber, plant protein, and B vitamins resulted in high short chain fatty acids, while a diet high in diary and processed meats that provided cholesterol and little fiber resulted in high branched chain fatty acids and ammonia during fecal fermentation of inulin.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1560-1560
Author(s):  
Inah Gu ◽  
Wing Shun Lam ◽  
Daya Marasini ◽  
Cindi Brownmiller ◽  
Brett Savary ◽  
...  

Abstract Objectives Arabinoxylan is a non-starch polysaccharide and rich in wheat, rice and many other cereal grains. Diets high in fiber help promoting gut health in obesity. The objective of this study was to investigate the impact of arabinoxylan from rice bran on the gut microbiota and short chain fatty acids (SCFA) in normal weight (NW) and overweight/obese (OO) subjects through in vitro fecal fermentation. Methods Arabinoxylan was extracted from rice bran fiber. For in vitro fecal fermentation, each fecal sample from NW (n = 6, 3 males and 3 females) and OO (n = 7, 3 males and 4 females) was diluted into anaerobic medium with three treatments: control (no substrates), fructooligosaccharides (FOS, a well-known prebiotic), and arabinoxylan. Samples were incubated at 37˚C and aliquots were taken at 0, 4, 8, 12 and 24 h. SCFA content from samples at all timepoints was analyzed using HPLC. Samples at 0 and 24 h were used for gut microbiota analysis through 16S rRNA gene sequencing. Statistical analyses were performed for the randomized complete block design, where the weight classes are confounded with blocks (subjects). Friedman test was used to determine the difference at 5% level of significance. Results As a result, arabinoxylan treatment significantly increased total SCFA concentration in both NW and OO subjects than control (P &lt; 0.05), comparable to FOS treatment. Between weight classes under arabinoxylan treatment, OO group showed a significantly higher total SCFA content than NW group (P &lt; 0.05). Arabinoxylan changed gut microbial population at the genus level, stimulating Bifidobacterium, Collinsella and Blautia and decreasing Clostridium XIVa and b, Dorea and Oscillibacter (P &lt; 0.05). In addition, different microbiome population was shown in weight classes with three treatments, showing higher Bacteroides in NW and higher Prevotella in OO. Conclusions These results showed that arabinoxylan from rice bran modified gut microbiota in both weight classes, increasing total SCFA content. This study suggests that arabinoxylan from rice bran may have a potential impact on microbial gut health in obesity with prebiotic activities. Funding Sources University of Arkansas.


Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 501-515 ◽  
Author(s):  
Kunpeng Wu ◽  
Yan Yuan ◽  
Huihui Yu ◽  
Xin Dai ◽  
Shu Wang ◽  
...  

Abstract The diversity of the human microbiome heralds the difference of the impact that gut microbial metabolites exert on allogenic graft-versus-host (GVH) disease (GVHD), even though short-chain fatty acids and indole were demonstrated to reduce its severity. In this study, we dissected the role of choline-metabolized trimethylamine N-oxide (TMAO) in the GVHD process. Either TMAO or a high-choline diet enhanced the allogenic GVH reaction, whereas the analog of choline, 3,3-dimethyl-1-butanol reversed TMAO-induced GVHD severity. Interestingly, TMAO-induced alloreactive T-cell proliferation and differentiation into T-helper (Th) subtypes was seen in GVHD mice but not in in vitro cultures. We thus investigated the role of macrophage polarization, which was absent from the in vitro culture system. F4/80+CD11b+CD16/32+ M1 macrophage and signature genes, IL-1β, IL-6, TNF-α, CXCL9, and CXCL10, were increased in TMAO-induced GVHD tissues and in TMAO-cultured bone marrow–derived macrophages (BMDMs). Inhibition of the NLRP3 inflammasome reversed TMAO-stimulated M1 features, indicating that NLRP3 is the key proteolytic activator involved in the macrophage’s response to TMAO stimulation. Consistently, mitochondrial reactive oxygen species and enhanced NF-κB nuclear relocalization were investigated in TMAO-stimulated BMDMs. In vivo depletion of NLRP3 in GVHD recipients not only blocked M1 polarization but also reversed GVHD severity in the presence of TMAO treatment. In conclusion, our data revealed that TMAO-induced GVHD progression resulted from Th1 and Th17 differentiation, which is mediated by the polarized M1 macrophage requiring NLRP3 inflammasome activation. It provides the link among the host choline diet, microbial metabolites, and GVH reaction, shedding light on alleviating GVHD by controlling choline intake.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 800 ◽  
Author(s):  
Hannah Harris ◽  
Christine Edwards ◽  
Douglas Morrison

Dietary mycoprotein (marketed as QuornTM) has many health benefits, including reductions in energy intake. The majority of studies evaluating mycoprotein focus on the protein content and very few consider the fibre content. Fibre consumption is also associated with decreased energy intake, which is partly attributed to short chain fatty acids (SCFAs) from fibre fermentation by colonic bacteria. To study the SCFA-producing capability of mycoprotein, in vitro batch fermentations were conducted, and SCFA production compared with that from extracted mycoprotein fibre, oligofructose (OF), rhamnose, and laminarin. Mycoprotein and mycoprotein fibre were both fermentable, resulting in a total SCFA production of 24.9 (1.7) and 61.2 (15.7) mmol/L, respectively. OF led to a significantly higher proportion of acetate compared to all other substrates tested (92.6 (2.8)%, p < 0.01). Rhamnose generated the highest proportion of propionate (45.3 (2.0)%, p < 0.01), although mycoprotein and mycoprotein fibre yielded a higher proportion of propionate compared with OF and laminarin. Butyrate proportion was the highest with laminarin (28.0 (10.0)although mycoprotein fibre led to a significantly higher proportion than OF (p < 0.01). Mycoprotein is a valuable source of dietary protein, but its fibre content is also of interest. Further evaluation of the potential roles of the fibre content of mycoprotein is required.


2011 ◽  
Vol 101 (8) ◽  
pp. 929-934 ◽  
Author(s):  
Nadia Ponts ◽  
Laetitia Pinson-Gadais ◽  
Anne-Laure Boutigny ◽  
Christian Barreau ◽  
Florence Richard-Forget

The impact of five phenolic acids (ferulic, coumaric, caffeic, syringic, and p-hydroxybenzoic acids) on fungal growth and type B trichothecene production by four strains of Fusarium graminearum was investigated. All five phenolic acids inhibited growth but the degree of inhibition varied between strains. Our results suggested that the more lipophilic phenolic acids are, the higher is the effect they have on growth. Toxin accumulation in phenolic acid-supplemented liquid glucose, yeast extract, and peptone cultures was enhanced in the presence of ferulic and coumaric acids but was reduced in the presence of p-hydroxybenzoic acid. This modulation was shown to correlate with a regulation of TRI5 transcription. In this study, addition of phenolic acids with greater antioxidant properties resulted in a higher toxin accumulation, indicating that the modulation of toxin accumulation may be linked to the antioxidant properties of the phenolic acids. These data suggest that, in planta, different compositions in phenolic acids of kernels from various cultivars may reflect different degrees of sensitivity to “mycotoxinogenesis.”


Author(s):  
Abbe Mhd Jalil ◽  
Emilie Combet ◽  
Christine Edwards ◽  
Ada Garcia

β-Glucan and black tea are fermented by the colonic microbiota producing short chain fatty acids (SCFA) and phenolic acids (PA). We hypothesized that the addition of β-glucan, a dietary fiber, and tea polyphenols to a food matrix like bread will also affect starch digestion in the upper gut and thus further influence colonic fermentation and SCFA production. This study investigated SCFA and PA production from locally developed breads: white bread (WB), black tea bread (BT), β-glucan bread (βG), β-glucan plus black tea bread (βGBT). Each bread was incubated in an in vitro system mimicking human digestion and colonic fermentation. Digestion with α-amylase significantly (p = 0.0001) increased total polyphenol and polyphenolic metabolites from BT bread compared with WB, βG, and βGBT. Total polyphenols in βGBT remained higher (p = 0.016; 1.3-fold) after digestion with pepsin and pancreatin compared with WB. Fermentations containing βG and βGBT produced similar propionate concentrations ranging from 17.5 to 18.6 mmol/L and total SCFA from 46.0 to 48.9 mmol/L compared with control WB (14.0 and 37.4 mmol/L, respectively). This study suggests that combination of black tea with β-glucan in this functional bread did not impact on SCFA production. A higher dose of black tea and β-glucan or in combination with other fibers may be needed to increase SCFA production.


2018 ◽  
Vol 9 (1) ◽  
pp. 21-34 ◽  
Author(s):  
K. Adamberg ◽  
K. Kolk ◽  
M. Jaagura ◽  
R. Vilu ◽  
S. Adamberg

The metabolic activity of colon microbiota is specifically affected by fibres with various monomer compositions, degree of polymerisation and branching. The supply of a variety of dietary fibres assures the diversity of gut microbial communities considered important for the well-being of the host. The aim of this study was to compare the impact of different oligo- and polysaccharides (galacto- and fructooligosaccharides, resistant starch, levan, inulin, arabinogalactan, xylan, pectin and chitin), and a glycoprotein mucin on the growth and metabolism of faecal microbiota in vitro by using isothermal microcalorimetry (IMC). Faecal samples from healthy donors were incubated in a phosphate-buffered defined medium with or without supplementation of a single substrate. The generation of heat was followed on-line, microbiota composition (V3-V4 region of the 16S rRNA using Illumina MiSeq v2) and concentrations of metabolites (HPLC) were determined at the end of growth. The multiauxic power-time curves obtained were substrate-specific. More than 70% of all substrates except chitin were fermented by faecal microbiota with total heat generation of up to 8 J/ml. The final metabolite patterns were in accordance with the microbiota changes. For arabinogalactan, xylan and levan, the fibre-affected distribution of bacterial taxa showed clear similarities (e.g. increase of Bacteroides ovatus and decrease of Bifidobacterium adolescentis). The formation of propionic acid, an important colon metabolite, was enhanced by arabinogalactan, xylan and mucin but not by galacto- and fructooligosaccharides or inulin. Mucin fermentation resulted in acetate, propionate and butyrate production in ratios previously observed for faecal samples, indicating that mucins may serve as major substrates for colon microbial population. IMC combined with analytical methods was shown to be an effective method for screening the impact of specific dietary fibres on functional changes in faecal microbiota.


2021 ◽  
Author(s):  
Elllen G Avery ◽  
Hendrik Bartolomaeus ◽  
Ariana Rauch ◽  
Chia-Yu Chen ◽  
Gabriele N'diaye ◽  
...  

Aims: Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. Methods and Results: In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. Four-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44mg/kg/d) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory fecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. Conclusion: Microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN.


Sign in / Sign up

Export Citation Format

Share Document