scholarly journals Potential of Creatine in Glucose Management and Diabetes

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 570
Author(s):  
Marina Yazigi Solis ◽  
Guilherme Giannini Artioli ◽  
Bruno Gualano

Creatine is one of the most popular supplements worldwide, and it is frequently used by both athletic and non-athletic populations to improve power, strength, muscle mass and performance. A growing body of evidence has been identified potential therapeutic effects of creatine in a wide variety of clinical conditions, such as cancer, muscle dystrophy and neurodegenerative disorders. Evidence has suggested that creatine supplementation alone, and mainly in combination with exercise training, may improve glucose metabolism in health individuals and insulin-resistant individuals, such as in those with type 2 diabetes mellitus. Creatine itself may stimulate insulin secretion in vitro, improve muscle glycogen stores and ameliorate hyperglycemia in animals. In addition, exercise induces numerous metabolic benefits, including increases in insulin-independent muscle glucose uptake and insulin sensitivity. It has been speculated that creatine supplementation combined with exercise training could result in additional improvements in glucose metabolism when compared with each intervention separately. The possible mechanism underlying the effects of combined exercise and creatine supplementation is an enhanced glucose transport into muscle cell by type 4 glucose transporter (GLUT-4) translocation to sarcolemma. Although preliminary findings from small-scale trials involving patients with type 2 diabetes mellitus are promising, the efficacy of creatine for improving glycemic control is yet to be confirmed. In this review, we aim to explore the possible therapeutic role of creatine supplementation on glucose management and as a potential anti-diabetic intervention, summarizing the current knowledge and highlighting the research gaps.

2021 ◽  
Vol 22 (7) ◽  
pp. 3566
Author(s):  
Chae Bin Lee ◽  
Soon Uk Chae ◽  
Seong Jun Jo ◽  
Ui Min Jerng ◽  
Soo Kyung Bae

Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.


2013 ◽  
Vol 43 (11) ◽  
pp. 1191-1199 ◽  
Author(s):  
David Montero ◽  
Guillaume Walther ◽  
Eric Benamo ◽  
Antonia Perez-Martin ◽  
Agnès Vinet

2016 ◽  
Vol 23 (13) ◽  
pp. 1375-1382 ◽  
Author(s):  
Eva Steidle-Kloc ◽  
Martin Schönfelder ◽  
Edith Müller ◽  
Sebastian Sixt ◽  
Gerhard Schuler ◽  
...  

2002 ◽  
Vol 282 (2) ◽  
pp. E370-E375 ◽  
Author(s):  
Yuval Heled ◽  
Yair Shapiro ◽  
Yoav Shani ◽  
Dani S. Moran ◽  
Lea Langzam ◽  
...  

We hypothesized that exercise training might prevent diabetes mellitus in Psammomys obesus. Animals were assigned to three groups: high-energy diet (CH), high-energy diet and exercise (EH), and low-energy diet (CL). The EH group ran on a treadmill 5 days/wk, twice a day. After 4 wk, 93% of the CH group were diabetic compared with only 20% of the EH group. There was no difference in weight gain among the groups. Both EH and CH groups were hyperinsulinemic. Epididymal fat (% of body weight) was higher in the CH group than in either the EH and or the CL group. Protein kinase C (PKC)-δ activity and serine phosphorylation were higher in the EH group. No differences were found in tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase among the groups. We demonstrate for the first time that exercise training effectively prevents the progression of diabetes mellitus type 2 in Psammomys obesus. PKC-δ may be involved in the adaptive effects of exercise in skeletal muscles that lead to the prevention of type 2 diabetes mellitus.


2020 ◽  
Vol 11 (6) ◽  
pp. 5538-5552 ◽  
Author(s):  
Yulan Li ◽  
Dan Chen ◽  
Chengmei Xu ◽  
Qingyujing Zhao ◽  
Yage Ma ◽  
...  

WMP (extract of pressed degreased walnut meal) is rich in polyphenols which exhibit multiple therapeutic effects.


Diabetologia ◽  
2011 ◽  
Vol 54 (7) ◽  
pp. 1810-1818 ◽  
Author(s):  
M. Bassil ◽  
S. Burgos ◽  
E. B. Marliss ◽  
J. A. Morais ◽  
S. Chevalier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document