scholarly journals Update on Calcium and Phosphorus Requirements of Preterm Infants and Recommendations for Enteral Mineral Intake

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1470
Author(s):  
Walter Mihatsch ◽  
Ulrich Thome ◽  
Miguel Saenz de Pipaon

Background: With current Ca and P recommendations for enteral nutrition, preterm infants, especially VLBW, fail to achieve a bone mineral content (BMC) equivalent to term infants. During the first 3 years, most notably in light at term equivalent age (<−2 Z score) VLBW infants’ BMC does not catch up. In adults born preterm with VLBW or SGA, lower adult bone mass, lower peak bone mass, and higher frequency of osteopenia/osteoporosis have been found, implying an increased risk for future bone fractures. The aim of the present narrative review was to provide recommendation for enteral mineral intake for improving bone mineral accretion. Methods: Current preterm infant mineral recommendations together with fetal and preterm infant physiology of mineral accretion were reviewed to provide recommendations for improving bone mineral accretion. Results: Current Ca and P recommendations systematically underestimate the needs, especially for Ca. Conclusion: Higher enteral fortifier/formula mineral content or individual supplementation is required. Higher general mineral intake (especially Ca) will most likely improve bone mineralization in preterm infants and possibly the long-term bone health. However, the nephrocalcinosis risk may increase in infants with high Ca absorption. Therefore, individual additional enteral Ca and/or P supplementations are recommended to improve current fortifier/formula mineral intake.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Francisco Sánchez Ferrer ◽  
Ernesto Cortes Castell ◽  
Francisco Carratalá Marco ◽  
Mercedes Juste Ruiz ◽  
José Antonio Quesada Rico ◽  
...  

Abstract Introduction Childhood obesity is a public health problem with repercussions in later life. As tissue formation peaks in childhood we determined how weight status influences bone mineral content. Material and methods We studied 553 children aged 4–18 years over 10 years (46.8% girls). We measured age, weight, height and through bone densitometry (DXA), bone mineral content (BMC), bone mineral density (BMD), and waist, arm and hip circumferences. The patients were divided into groups using the body mass index z-score: underweight, normal weight, overweight, obese and very obese. Results BMC and BMD values were highest in the normal-weight and overweight groups. Logistic regression showed bone mineralization was inversely associated with waist circumference, the association being positive for weight and age. No differences were found according to sex. Discussion Studies of the relationship between weight and bone mineralization report contradictory results, often because of different study designs. Moreover, studies in children are either few or with small samples. Our findings in a large sample show the importance of weight status in bone mineralization given the risk of bone fractures or osteoporosis. Conclusions Weight status influenced bone mineralization. BMC and BMD decreased in children with a higher degree of obesity. Waist circumference correlated negatively with bone mineralization.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Peter Jackuliak ◽  
Juraj Payer

It is well established that osteoporosis and diabetes are prevalent diseases with significant associated morbidity and mortality. Patients with diabetes mellitus have an increased risk of bone fractures. In type 1 diabetes, the risk is increased by ∼6 times and is due to low bone mass. Despite increased bone mineral density (BMD), in patients with type 2 diabetes the risk is increased (which is about twice the risk in the general population) due to the inferior quality of bone. Bone fragility in type 2 diabetes, which is not reflected by bone mineral density, depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers and examination methods are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. One of these methods can be trabecular bone score. The aim of the paper is to present the present state of scientific knowledge about the osteoporosis risk in diabetic patient. The review also discusses the possibility of problematic using the study conclusions in real clinical practice.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1005
Author(s):  
Walter Mihatsch ◽  
Izaskun Dorronsoro Martín ◽  
Vicente Barrios-Sabador ◽  
María L. Couce ◽  
Gabriel Á. Martos-Moreno ◽  
...  

The present study longitudinally evaluated growth, bone mineral density, body composition, and metabolic health outcome in very low birth weight (VLBW) infants whose in-hospital target nutrient intake was within recent recommendations. From six months to three years, bone mineral density (dual-energy X-ray absorptiometry, DXA), body composition, and metabolic health outcome were compared with a reference group of term infants. The aim was to test whether in-hospital achieved weight gain until 36 weeks of gestation (light or appropriate for term equivalent age; LTEA or ATEA) predicts later growth, bone mineral density (BMD), abdominal obesity, or metabolic health outcomes such as insulin resistance, relative to term infants, during the first three years of life. Target in-hospital energy and protein intake was not achieved. Growth in weight, length and head circumference, mid arm circumference, adiposity, fat free mass (FFM), and bone mineralization in VLBW infants was less than those in term infants and influenced by nutritional status at discharge. Preterm infants had poorer motor and cognitive outcomes. Post-discharge body composition patterns indicate FFM proportional to height but lower fat mass index in LTEA preterm infants than term infants, with no evidence of increased truncal fat in preterm infants. The hypothesis of early BMD catch-up in VLBW infants after discharge was not supported by the present data. The clinical significance of these findings is unclear. The data may suggest a reduced obesity risk but an increased osteoporosis risk. Since postnatal growth restriction may have permanent negative health effects, LTEA VLBW infants would especially appear to benefit from targeted preventive interventions. Further follow-up of the infants is required.


2012 ◽  
Vol 25 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Susan Ziglar ◽  
Tracy S. Hunter

Maximizing bone mass in youth is touted as the best strategy to offset the natural losses of aging and the menopausal transition. Not achieving maximum peak bone mineral density (BMD) is an independent risk factor for osteoporosis and thus a public health concern. Adolescence is a critical time of bone mineralization mediated by endogenous estradiol. Research has shown that the highest velocity of bone mass accrual occurs 1 year before menarche and after the first 3 years. Low-peak attainment of BMD in young women is associated with contributing factors such as diets low in calcium, eating disorders, lack of exercise, smoking, and low estrogen states. Oral contraceptives (OCs) suppress endogenous estradiol production by suppressing the hypothalamic–pituitary–ovarian axis. Thus, OCs, by replacing endogenous estradiol with ethinyl estradiol (EE), establish and maintain new hormone levels. The early initiation and the use of very low dose of EE raises the possibility that bone mass accrual at a critical time of bone mineralization in young women or adolescents may be jeopardized. This review examines the studies of BMD in adolescents and young women that use combination hormonal contraception. Some studies had inherent limitations, such as small trial, poor control of confounders, failure to exclude women with prior use of hormonal contraceptives, or prior pregnancy from control groups. The vast majority of reviewed studies showed OCs containing 20 to 30 µg of EE interfere with acquisition of peak BMD. Limited numbers of studies examine the effects of OCs containing 35 µg on adolescents and young adults. Additionally, studies are needed evaluating the progestin component of OCs as their differing androgenic properties may affect bone mineralization as well.


PEDIATRICS ◽  
1992 ◽  
Vol 90 (5) ◽  
pp. 757-759
Author(s):  
N. KEVIN IVES

Watchko and Oski have a reputation for stimulating debate on the topic of neonatal jaundice. As scriptwriters of "Vigintiphobia: a one-act play,"1 they questioned the `standard practice' applied to the management of jaundice in otherwise healthy term infants. In the current issue of Pediatrics2 they again court controversy by turning their attention to treatment thresholds and the risk of kernicterus in jaundiced preterm infants. We are provided with a thoroughly researched historical review of the risk of kernicterus in the preterm infant from 1950 to the 1990s. The story is presented as a journey of experience from the pre-intensive care era, through the so-called `low bilirubin kernicterus era' (1965 through 1982), to the present.


2021 ◽  
Vol 74 (7-8) ◽  
pp. 257-265
Author(s):  
Firdevs Ezgi Uçan Tokuç ◽  
Fatma Genç ◽  
Abidin Erdal ◽  
Yasemin Biçer Gömceli

Many systemic problems arise due to the side effects of antiepileptic drugs (AEDs) used in epilepsy patients. Among these adverse effects are low bone mineral density and increased fracture risk due to long-term AED use. Although various studies have supported this association with increased risk in recent years, the length of this process has not been precisely defined and there is no clear consensus on bone density scanning, intervals of screening, and the subject of calcium and vitamin D supplementation. In this study, in accordance with the most current recommendations, our applications and data, including the detection of possible bone mineralization disorders, treatment methods, and recommendations to prevent bone mineralization disorders, were evaluated in epilepsy patients who were followed up at our outpatient clinic. It was aimed to draw attention to the significance of management of bone metabolism carried out with appropriate protocols. Epilepsy patients were followed up at the Antalya Training and Research Hospital Department of Neurology, Epilepsy Outpatient Clinic who were at high risk for osteoporosis (use of valproic acid [VPA] and enzyme-inducing drugs, using any AED for over 5 years, and postmenopausal women) and were evaluated using a screening protocol. According to this protocol, a total of 190 patients suspected of osteoporosis risk were retrospectively evaluated. Four patients were excluded from the study due to secondary osteoporosis. Of the 186 patients who were included in the study, 97 (52.2%) were women and 89 (47.8%) were men. Prevalence of low bone mineral density (BMD) was 42%, in which osteoporosis was detected in 11.8% and osteopenia in 30.6% of the patients. Osteoporosis rate was higher at the young age group (18-45) and this difference was statistically significant (p=0.018). There was no significant difference between male and female sexes according to osteoporosis and osteopenia rates. Patients receiving polytherapy had higher osteoporosis rate and lower BMD compared to patients receiving monotherapy. Comparison of separate drug groups according to osteoporosis rate revealed that osteoporosis rate was highest in patient groups using VPA+ carbamazepine (CBZ) (29.4%) and VPA polytherapy (19.4%). Total of osteopenia and osteoporosis, or low BMD, was highest in VPA polytherapy (VPA+ non-enzyme-inducing AED [NEID]) and CBZ polytherapy (CBZ+NEID) groups, with rates of 58.3% and 55.1%, respectively. In addition, there was no significant difference between drug groups according to bone metabolism markers, vitamin D levels, and osteopenia-osteoporosis rates. Assuming bone health will be affected at an early age in epilepsy patients, providing lifestyle and diet recommendations, avoiding polytherapy including VPA and CBZ when possible, and evaluating bone metabolism at regular intervals are actions that should be applied in routine practice.


2020 ◽  
Vol 16 (2) ◽  
pp. 148-155
Author(s):  
Areti Aphrodite Sioriki ◽  
Despoina Gkentzi ◽  
Evangelia Papadimitriou ◽  
Gabriel Dimitriou ◽  
Ageliki Karatza

Infants born prematurely (before completion of 37 weeks of gestation) are at increased risk of morbidity and mortality due to vaccine preventable diseases, mostly because of their immunological immaturity and failure of transfer of maternal protective antibodies. Despite their great need of being vaccinated, concerns on vaccine safety and efficacy, constitute the main reasons for which vaccinations are often delayed in this group. In this review we summarize the latest evidence on vaccine safety, efficacy and immunogenicity in preterm infants which is similar to full-term infants. Therefore there is no reason for delaying vaccination in this population.


Sign in / Sign up

Export Citation Format

Share Document