scholarly journals Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3751
Author(s):  
Daniel J. York ◽  
Anne L. Smazal ◽  
Daniel T. Robinson ◽  
Isabelle G. De Plaen

Growing evidence demonstrates human milk’s protective effect against necrotizing enterocolitis (NEC). Human milk derives these properties from biologically active compounds that influence intestinal growth, barrier function, microvascular development, and immunological maturation. Among these protective compounds are growth factors that are secreted into milk with relatively high concentrations during the early postnatal period, when newborns are most susceptible to NEC. This paper reviews the current knowledge on human milk growth factors and their mechanisms of action relevant to NEC prevention. It will also discuss the stability of these growth factors with human milk pasteurization and their potential for use as supplements to infant formulas with the goal of preventing NEC.

2021 ◽  
Vol 22 (21) ◽  
pp. 11866
Author(s):  
María García-Ricobaraza ◽  
José Antonio García-Santos ◽  
Mireia Escudero-Marín ◽  
Estefanía Diéguez ◽  
Tomás Cerdó ◽  
...  

Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.


2017 ◽  
Vol 16 ◽  
pp. 28-39 ◽  
Author(s):  
Xiaoqiang Zou ◽  
Abdelmoneim H Ali ◽  
Sherif M Abed ◽  
Zheng Guo

2020 ◽  
Vol 11 (11) ◽  
pp. 9445-9467
Author(s):  
Chunli Kong ◽  
Marijke M. Faas ◽  
Paul de Vos ◽  
Renate Akkerman

This review updates current knowledge on the structure-specific effects of human milk oligosaccharides and non-digestible carbohydrates in infant formula on the colonization of the infants gut by the microbiota as well as the composition and maturation of the gut immune barrier.


2021 ◽  
Vol 141 ◽  
pp. 110149
Author(s):  
Silvia Sánchez-Hernández ◽  
Adelaida Esteban-Muñoz ◽  
Cristina Samaniego-Sánchez ◽  
Rafael Giménez-Martínez ◽  
Beatriz Miralles ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 708
Author(s):  
Żaneta Binert-Kusztal ◽  
Małgorzata Starek ◽  
Joanna Żandarek ◽  
Monika Dąbrowska

Currently, there is still a need for broad-spectrum antibiotics. The new cephalosporin antibiotics include, among others, ceftobiprole, a fifth-generation gram-positive cephalosporin, active against Staphylococcus aureus methicillin agonist (MRSA). The main focus of the work was to optimize the conditions of ceftobiprole qualitative determination and to validate the developed procedure according to ICH guidelines. As a result of the optimization process, HPTLC Cellulose chromatographic plates as a stationary phase and a mixture consisting of ethanol:2-propanol: glacial acetic acid: water (4:4:1:3, v/v/v/v) as a mobile phase were chosen. The densitometric detection was carried out at maximum absorbance of ceftobiprole (λ = 232 nm). Next, the validation process of the developed procedure was carried out. The relative standard deviation (RSD) for precision was less than 1.65%, which proves the high compatibility of the results, as well as the LOD = 0.0257 µg/spot and LOQ = 0.0779 µg/spot values, which also confirm the high sensitivity of the procedure. The usefulness of the developed method for the stability studies of ceftobiprole was analyzed. Study was carried out under stress conditions, i.e., acid and alkaline environments, exposure to radiation imitating sunlight and high temperature (40–60 °C). It was found that cefotbiprole is unstable in an alkaline environment and during exposure to UV-VIS radiation. Moreover, the lipophilicity parameter, as a main physicochemical property of the biologically active compound, was determined using experimental and computational methods.


Author(s):  
Parul Christian ◽  
Emily R Smith ◽  
Sun Eun Lee ◽  
Ashley J Vargas ◽  
Andrew A Bremer ◽  
...  

ABSTRACT Critical advancement is needed in the study of human milk as a biological system that intersects and interacts with myriad internal (maternal biology) and external (diet, environment, infections) factors and its plethora of influences on the developing infant. Human-milk composition and its resulting biological function is more than the sum of its parts. Our failure to fully understand this biology in a large part contributes to why the duration of exclusive breastfeeding remains an unsettled science (if not policy). Our current understanding of human-milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation. The overly simplistic, but common, approach to analyzing single, mostly nutritive components of human milk is insufficient to understand the contribution of either individual components or the matrix within which they exist to both maternal and child health. There is a need for a shift in the conceptual approach to studying human milk to improve strategies and interventions to support better lactation, breastfeeding, and the full range of infant feeding practices, particularly for women and infants living in undernourished and infectious environments. Recent technological advances have led to a rising movement towards advancing the science of human-milk biology. Herein, we describe the rationale and critical need for unveiling the multifunctionality of the various nutritional, nonnutritional, immune, and biological signaling pathways of the components in human milk that drive system development and maturation, growth, and development in the very early postnatal period of life. We provide a vision and conceptual framework for a research strategy and agenda to change the field of human-milk biology with implications for global policy, innovation, and interventions.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 984
Author(s):  
Rima El-Dirany ◽  
Hawraa Shahrour ◽  
Zeinab Dirany ◽  
Fadi Abdel-Sater ◽  
Gustavo Gonzalez-Gaitano ◽  
...  

Anti-microbial peptides (AMPs), small biologically active molecules, produced by different organisms through their innate immune system, have become a considerable subject of interest in the request of novel therapeutics. Most of these peptides are cationic-amphipathic, exhibiting two main mechanisms of action, direct lysis and by modulating the immunity. The most commonly reported activity of AMPs is their anti-bacterial effects, although other effects, such as anti-fungal, anti-viral, and anti-parasitic, as well as anti-tumor mechanisms of action have also been described. Their anti-parasitic effect against leishmaniasis has been studied. Leishmaniasis is a neglected tropical disease. Currently among parasitic diseases, it is the second most threating illness after malaria. Clinical treatments, mainly antimonial derivatives, are related to drug resistance and some undesirable effects. Therefore, the development of new therapeutic agents has become a priority, and AMPs constitute a promising alternative. In this work, we describe the principal families of AMPs (melittin, cecropin, cathelicidin, defensin, magainin, temporin, dermaseptin, eumenitin, and histatin) exhibiting a potential anti-leishmanial activity, as well as their effectiveness against other microorganisms.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1109
Author(s):  
Cristina Adriana Dehelean ◽  
Iasmina Marcovici ◽  
Codruta Soica ◽  
Marius Mioc ◽  
Dorina Coricovac ◽  
...  

Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin’s (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 687
Author(s):  
Daniela Gabbia ◽  
Luana Cannella ◽  
Sara De De Martin

A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.


Sign in / Sign up

Export Citation Format

Share Document