scholarly journals Cameroonian Spice Extracts Modulate Molecular Mechanisms Relevant to Cardiometabolic Diseases in SW 872 Human Liposarcoma Cells

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4271
Author(s):  
Achille Parfait Atchan Nwakiban ◽  
Anna Passarelli ◽  
Lorenzo Da Dalt ◽  
Chiara Olivieri ◽  
Tugba Nur Demirci ◽  
...  

The molecular pathophysiology of cardiometabolic diseases is known to be influenced by dysfunctional ectopic adipose tissue. In addition to lifestyle improvements, these conditions may be managed by novel nutraceutical products. This study evaluatedthe effects of 11 Cameroonian medicinal spice extracts on triglyceride accumulation, glucose uptake, reactive oxygen species (ROS) production and interleukin secretion in SW 872 human adipocytes after differentiation with 100 µM oleic acid. Triglyceride content was significantly reduced by all spice extracts. Glucose uptake was significantly increased by Tetrapleura tetraptera, Aframomum melegueta and Zanthoxylum leprieurii. Moreover, Xylopia parviflora, Echinops giganteus and Dichrostachys glomerata significantly reduced the production of ROS. Concerning pro-inflammatory cytokine secretion, we observed that Tetrapleura tetraptera, Echinops giganteus, Dichrostachys glomerata and Aframomum melegueta reduced IL-6 secretion. In addition, Xylopia parviflora, Monodora myristica, Zanthoxylum leprieurii, and Xylopia aethiopica reduced IL-8 secretion, while Dichrostachys glomerata and Aframomum citratum increased it. These findings highlight some interesting properties of these Cameroonian spice extracts in the modulation of cellular parameters relevant to cardiometabolic diseases, which may be further exploited, aiming to develop novel treatment options for these conditions based on nutraceutical products.

2016 ◽  
Vol 43 (11) ◽  
pp. 1956-1964 ◽  
Author(s):  
Sigrun R. Hofmann ◽  
Anja Schnabel ◽  
Angela Rösen-Wolff ◽  
Henner Morbach ◽  
Hermann J. Girschick ◽  
...  

Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disorder, covering a clinical spectrum with asymptomatic inflammation of single bones at the one end, and chronic recurrent multifocal osteomyelitis (CRMO) at the other end. The exact molecular pathophysiology of CNO remains largely unknown. Provided familial clusters and the association with inflammatory disorders of the skin and intestine suggest a genetic predisposition. Recently, profound dysregulation of cytokine responses was demonstrated in CRMO. Failure to produce antiinflammatory cytokines interleukin (IL)-10 and IL-19 contributes to activation of inflammasomes and subsequent IL-1β release. In IL-10–deficient and in CNO-prone chronic multifocal osteomyelitis mice, IL-1β was linked to bone inflammation. Further, alterations to the gut microbiome were suggested in contributing to IL-1β release from innate immune cells in mice, offering an interesting target in the search for molecular mechanisms in CNO. Here, we summarize clinical presentation and treatment options in CNO/CRMO, current pathophysiological concepts, available mouse models, and promising future scientific directions.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1548
Author(s):  
Mustafa N. Mithaiwala ◽  
Danielle Santana-Coelho ◽  
Grace A. Porter ◽  
Jason C. O’Connor

Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that ‘fuel the fire’ in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3279
Author(s):  
Yuet Ping Kwan ◽  
Melissa Hui Yen Teo ◽  
Jonathan Chee Woei Lim ◽  
Michelle Siying Tan ◽  
Graciella Rosellinny ◽  
...  

Although less common, melanoma is the deadliest form of skin cancer largely due to its highly metastatic nature. Currently, there are limited treatment options for metastatic melanoma and many of them could cause serious side effects. A better understanding of the molecular mechanisms underlying the complex disease pathophysiology of metastatic melanoma may lead to the identification of novel therapeutic targets and facilitate the development of targeted therapeutics. In this study, we investigated the role of leucine-rich α-2-glycoprotein 1 (LRG1) in melanoma development and progression. We first established the association between LRG1 and melanoma in both human patient biopsies and mouse melanoma cell lines and revealed a significant induction of LRG1 expression in metastatic melanoma cells. We then showed no change in tumour cell growth, proliferation, and angiogenesis in the absence of the host Lrg1. On the other hand, there was reduced melanoma cell metastasis to the lungs in Lrg1-deficient mice. This observation was supported by the promoting effect of LRG1 in melanoma cell migration, invasion, and adhesion. Mechanistically, LRG1 mediates melanoma cell invasiveness in an EGFR/STAT3-dependent manner. Taken together, our studies provided compelling evidence that LRG1 is required for melanoma metastasis but not growth. Targeting LRG1 may offer an alternative strategy to control malignant melanoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Qu ◽  
Sarah Fourman ◽  
Maureen Fitzgerald ◽  
Min Liu ◽  
Supna Nair ◽  
...  

AbstractApolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 555
Author(s):  
Soyoung Hur ◽  
Eungyeong Jang ◽  
Jang-Hoon Lee

Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds—kaempferol and quercetin—against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.


2020 ◽  
Vol 115 (6) ◽  
Author(s):  
Fleur E. Mason ◽  
Julius Ryan D. Pronto ◽  
Khaled Alhussini ◽  
Christoph Maack ◽  
Niels Voigt

AbstractThe molecular mechanisms underlying atrial fibrillation (AF), the most common form of arrhythmia, are poorly understood and therefore target-specific treatment options remain an unmet clinical need. Excitation–contraction coupling in cardiac myocytes requires high amounts of adenosine triphosphate (ATP), which is replenished by oxidative phosphorylation in mitochondria. Calcium (Ca2+) is a key regulator of mitochondrial function by stimulating the Krebs cycle, which produces nicotinamide adenine dinucleotide for ATP production at the electron transport chain and nicotinamide adenine dinucleotide phosphate for the elimination of reactive oxygen species (ROS). While it is now well established that mitochondrial dysfunction plays an important role in the pathophysiology of heart failure, this has been less investigated in atrial myocytes in AF. Considering the high prevalence of AF, investigating the role of mitochondria in this disease may guide the path towards new therapeutic targets. In this review, we discuss the importance of mitochondrial Ca2+ handling in regulating ATP production and mitochondrial ROS emission and how alterations, particularly in these aspects of mitochondrial activity, may play a role in AF. In addition to describing research advances, we highlight areas in which further studies are required to elucidate the role of mitochondria in AF.


1993 ◽  
Vol 264 (6) ◽  
pp. C1600-C1608 ◽  
Author(s):  
T. Sandouk ◽  
D. Reda ◽  
C. Hofmann

Adipocytes play an important role in normal physiology as a major site for systemic energy homeostasis. In disorders such as diabetes, adipocyte function is markedly altered. In this study, we investigated the effect of pioglitazone, a novel antidiabetic agent known to lower plasma glucose in animal models of diabetes mellitus, on cellular differentiation and expression of adipose-specific genes. Treatment of confluent 3T3-F442A preadipocyte cultures for 7 days with pioglitazone (Pio; 1 microM) and insulin (Ins; 0.17 microM) resulted in > 95% cell differentiation into lipid-accumulating adipocytes in comparison with 60-80% cell differentiation by treatment with either agent alone. Analysis of triglyceride accumulation showed increases of triglyceride content over time above untreated preadipocytes by treatment of the cells with Ins, Pio, and especially with Ins + Pio. Basal glucose transport, as measured by cellular uptake of 2-deoxy-D-[14C]glucose, was likewise enhanced in a time-dependent manner by treatment of preadipocytes with Ins, Pio, or Ins + Pio, such that a synergistic effect resulted from the combined treatment with both agents. It was further determined that RNA transcript abundance for genes encoding glucose transporters GLUT-1 and GLUT-4, as well as the adipose-specific genes encoding adipsin and aP2, were increased by the Ins, Pio, or Ins + Pio treatment. Taken together, these findings indicate that pioglitazone is a potent adipogenic agent. By promoting differentiation, this agent may move cells into a state active for glucose uptake, storage, and metabolism.


2013 ◽  
Vol 305 (2) ◽  
pp. E205-E212 ◽  
Author(s):  
Francisco Visiedo ◽  
Fernando Bugatto ◽  
Viviana Sánchez ◽  
Irene Cózar-Castellano ◽  
Jose L. Bartha ◽  
...  

Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ∼30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ∼20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ∼40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ∼70% and phosphorylation levels of acetyl-CoA carboxylase by ∼25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides.


2021 ◽  
Vol 11 (9) ◽  
pp. 1812-1817
Author(s):  
Jingjing Zhou ◽  
Wenjuan Zhu ◽  
Zheng Mao ◽  
Zhen Li ◽  
Xiaoqin Li ◽  
...  

Background: The objective of the research was to investigate the roles of miR-4458 in the regulation of insulin resistance in hepatic cells and to explore the underlying molecular mechanisms. Methods: The blood samples were collected from the T2D patients and the health controls, and the liver tissues were collected from the DM and control rats. The relationship between IGF1R and miR-4458 was predicted by TargetScan and verified by the dual luciferase reporter gene system. qRT-PCR was used to measure the mRNA expression of miR-4458, IGF1R, G6Pase and PEPCK. The protein expression of IGF1R, p-AKT and AKT were measured by Western blot analysis. The rat insulin ELISA Kit and glucose Uptake Colorimteric Assay Kit were used to determine the level of serum insulin and the glucose uptake. Results: miR-4458 was high expressed in T2D patients. We predicted and verified that IGF1R was a direct target of miR-4458, and the mRNA expression of IGF1R was reduced in type 2 diabetes patients. We established the diabetes model (DM) and IR HepG2 cell model, and found that the blood glucose and serum insulin levels were significantly elevated in the DM group. miR-4458 expression was up-regulated, while the expression of IGF1R and p-AKT, and p-AKT/AKT ratio were reduced in the DM group and IR HepG2 cell model. miR-4458 inhibitor and IGF1R-siRNA significantly decreased the expression of miR-4458 and IGF1R respectively. In comparison with IR+inhibitor control group, miR-4458 inhibitor increased 2-DG6P content, IGF1R expression, p-AKT expression and p-AKT/AKT ratio, reduced the expression of G6Pase and PEPCK, and all the effects were reversed by down-regulating IGF1R. Conclusion: miR-4458 regulated the insulin resistance in hepatic cells by regulating the IGF1R/PI3K/AKT signal pathway, which will be a potential target for the treatment of diabetes.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi215-vi216
Author(s):  
Melanie Schoof ◽  
Carolin Göbel ◽  
Dörthe Holdhof ◽  
Sina Al-Kershi ◽  
Ulrich Schüller

Abstract DNA methylation based classification of brain tumors has revealed a high heterogeneity between tumors and led to the description of multiple distinct subclasses. The increasing subdivision of tumors can help to understand molecular mechanisms of tumor development and to improve therapy if appropriate model systems for preclinical research are available. Multiple recent publications have described a subgroup of pediatric glioblastoma which is clearly separable from other pediatric and adult glioblastoma in its DNA methylation profile (GBM MYCN). Many cases in this group are driven by MYCN amplifications and harbor TP53 mutations. These tumors almost exclusively occur in children and were further described as highly aggressive with a median overall survival of only 14 months. In order to further investigate the biology and treatment options of these tumors, we generated hGFAP-cre::TP53 Fl/Fl ::lsl-MYCN mice. These mice carry a loss of TP53 and show aberrant MYCN expression in neural precursors of the central nervous system. The animals develop large forebrain tumors within the first 80 days of life with 100 % penetrance. These tumors resemble human GBM MYCN tumors histologically and are sensitive to AURKA and ATR inhibitors in vitro. We believe that further characterization of the model and in vivo treatment studies will pave the way to improve treatment of patients with these highly aggressive tumors.


Sign in / Sign up

Export Citation Format

Share Document