scholarly journals Reduced Level of Tear Antimicrobial and Immunomodulatory Proteins as a Possible Reason for Higher Ocular Infections in Diabetic Patients

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 883
Author(s):  
Gergő Kalló ◽  
Anita Katalin Varga ◽  
Judit Szabó ◽  
Miklós Emri ◽  
József Tőzsér ◽  
...  

(1) Background: Diabetes mellitus is one of the most common metabolic disorders and a risk factor for bacterial ocular infections. Our aim was to examine the antibacterial activity of tears from patients with diabetes mellitus with and without diabetic retinopathy and to link this activity to the level of tear proteins. (2) Methods: Non-stimulated basal tears were collected from 39 eyes of 35 subjects. The antibacterial activity of tear pools was tested against pathogenic Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 26922 and Pseudomonas aeruginosa ATCC 27853 strains. The levels of 10 antimicrobial and immunomodulatory proteins were analyzed in the individual tear samples of the studied groups by SRM-based targeted mass spectrometry analysis. (3) Results: Disease stage-specific antimicrobial effect was observed in case of Staphylococcus aureus ATCC 29213 strain, and a non-disease specific inhibitory effect was observed in case of Pseudomonas aeruginosa ATCC 27853 strain. Changes in the levels of the studied antimicrobial and immunomodulatory proteins in the tears of the studied groups were also observed. (4) Conclusions: The higher ocular infection rate observed in diabetic patients may be the consequence of the decreased antimicrobial activity of tears possibly caused by the changes in the levels of antimicrobial and immunomodulatory proteins.

2018 ◽  
Vol 8 (3) ◽  
pp. 251-256
Author(s):  
Mohammuddunnobi ◽  
Tasnuva Jahan ◽  
Abdullah Al Amin

Background: Diabetic foot is one of the most feared complications of diabetes and is the leading cause of hospitalization in diabetic patients. Limb-threatening infection in diabetic patients are usually polymicrobial involving both multiple aerobic and anaerobic organisms.Methods: The present study was a cross sectional study, conducted in the Department of Surgery and Microbiology at BIRDEM General Hospital, Dhaka, over a period of 9 months during January 2017- September’ 2017. The study included a total of 77 adult patients of clinically diagnosed diabetic foot patients presenting to outpatient department and emergency ward. The standard case definition of diabetic foot is ‘any pathology occurring in the foot of a patient suffering from diabetes mellitus or as a result of long term complication of diabetes mellitus’.Results: 17(22.1%) patients had Klebsiella pneumonia, 14(18.2%) had Pseudomonas aeruginosa, 11(14.3%) had Staphylococcus aureus, 10(13.0%) had Escherichia coli, 6(7.8%) had Coagulase-negative staphylococci and 8(10.4%) had Providencia spp. In Escherichia coli 100% sensitivity to imipenem, 70% to amoxicillinclavulanic acid, amikacin, piperacillin-tazobactam. In Coagulase-negative Staphylococci 83.3% sensitivity to tetracycline, 66.7% to ceftriaxone. In Proteus mirabilis 100% sensitivity to tetracycline, amikacin, ceftriaxone, imipenem, piperacillin-tazobactam. In Enterococcus spp.75.0% sensitivity to tetracycline. In Citrobacter spp. 100% sensitivity to imipenem.Conclusion: Common organism found in diabetic foot ulcer patients were Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Coagulase-negative staphylococci and Providencia spp. In tetracycline, amikacin, ceftriaxone, imipenem, piperacillin-tazobactam was 100% sensitive in Proteus mirabilis and only imipenem found in Citrobacter spp.Birdem Med J 2018; 8(3): 251-256


2017 ◽  
Vol 19 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Domenico Schillaci ◽  
Maria Grazia Cusimano ◽  
Stella Maria Cascioferro ◽  
Vita Di Stefano ◽  
Vincenzo Arizza ◽  
...  

2018 ◽  
Vol 16 (S1) ◽  
pp. S155-S163 ◽  
Author(s):  
S. Mehalaine ◽  
O. Belfadel ◽  
T. Menasria ◽  
A. Messaili

The present study was carried out to determine, for the first time, the chemical composition and antibacterial activity of essential oils derived from the aerial parts of three aromatic plants Thymus algeriensis Boiss & Reut, Rosmarinus officinalis L., and Salvia officinalis L. growing under semiarid conditions. The essential oils were chemically analyzed and identified by gas chromatography (GC) and GC/ mass spectrometry (GC/MS) and their antimicrobial activity was individually evaluated against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using both agar disk diffusion and agar dilution methods. The major constituents of Thymus algeriensis essential oil were identified as camphor (13.62%), 1,8-cineol (6.00%), borneol (5.74%), viridiflorol (4.00%), and linalool (3.93%). For Rosmarinus officinalis essential oil, 48 compounds were characterized, of which the main constituents were camphor (17.09%), Z-β-ocimene (10.88%), isoborneol (9.68%), α-bisabolol (7.89%), and borneol (5.11%). While, Salvia officinalis essential oil was characterized by β-thujone (16.44%), followed by viridiflorol (10.93%), camphor (8.99%), 1,8-cineol (8.11%), trans-caryophyllene (5.85%), and α-humulene (4.69%) as the major components. Notably, results from antibacterial screening indicated that Thymus algeriensis and Salvia officinalis essential oils exhibited a strong inhibitory effect against both Escherichia coli and Staphylococcus aureus compared to Rosmarinus officinalis essential oil. Further, less activity was recorded against Pseudomonas aeruginosa for the three tested essential oils.


2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


2013 ◽  
Vol 20 (4) ◽  
pp. 389-393 ◽  
Author(s):  
Teodora Chiţă ◽  
Delia Muntean ◽  
Luminiţa Badiţoiu ◽  
Bogdan Timar ◽  
Roxana Moldovan ◽  
...  

Abstract Background and aims: Infected foot ulcer is one of the most feared complications of diabetes mellitus. Staphylococcus aureus is the most frequently isolated pathogen in diabetic foot infections. The aim of this study was to evaluate the prevalence of S. aureus strains involved in producing foot infections in diabetic patients and the antibiotic resistance pattern of these strains. Material and methods: The study included 33 S. aureus strains isolated from 55 diabetic foot ulcers. The subjects were selected from the 2465 patients with diabetes mellitus hospitalized in the Timişoara Diabetes Clinic, between 2011 and 2013. Germs’ identification relied on cultural and biochemical characteristics. Final identification and antimicrobial testing were performed using the Vitek 2 (Bio Merieux France) automatic analyzer. Results: All the 55 samples collected from diabetic foot ulcers were positive. We isolated 64 bacterial strains (some samples were positive for 2 microorganisms). The most frequently isolated germ was S. aureus, in 33 samples (51.56%). All these S. aureus strains showed resistance to benzylpenicillin, while only 33.33% were methicillin-resistant (MRSA). Conclusions: The most frequently isolated germ in the wound secretions from diabetic foot ulcers was S. aureus. The highest percentage of antimicrobial resistance was recorded to benzylpenicillin and erythromycin.


2018 ◽  
Vol 21 (0) ◽  
Author(s):  
Flávia Cíntia de Oliveira ◽  
Tamara Rezende Marques ◽  
Gustavo Henrique Andrade Machado ◽  
Thaís Cristina Lima de Carvalho ◽  
Aline Aparecida Caetano ◽  
...  

Abstract The phenolic compounds from various extracts of jabuticaba skin powder (JSP) were characterized in this study, and the antibacterial activity assessed. The phenolic compounds were extracted from the JSP using four methods: a) acetone extraction - 1 g JSP: 10 mL 70% acetone, resting for 2 hours; b) aqueous extract - 1 g JSP: 15 mL water, under agitation; c) ethanolic extract - 1 g JSP: 15 mL acidified ethanol, under agitation; and d) methanolic extract - 1 g JSP: 50 mL 50% methanol, under reflux. The antibacterial activity was evaluated by the agar diffusion assay, using Escherichia coli ATCC 11229, Salmonella choleraesuis ATCC 6539, Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 6538 and Listeria monocytogenes ATCC 19117. The ethanolic and methanolic extracts showed the highest levels of phenolic compounds, especially of cyanidin chloride, catechin and epicatechin. The extracts did not inhibit the growth of Escherichia coli and Salmonella choleraesuis, but inhibited 30% of the growth of Pseudomonas aeruginosa with an extract concentration of 250 µg mL-1. Against Staphylococcus aureus and Listeria monocytogenes the highest inhibitory effect observed was 41.8% for the ethanolic extract, followed by 36% inhibition by the methanolic extract, thus revealing the potential of these extracts as possible alternatives for use in the food and/or pharmaceutical industries.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Antonio Carlos Pereira de Menezes Filho ◽  
Matheus Vinícius Abadia Ventura ◽  
Carlos Frederico de Souza Castro

Tibouchina granulosa is a species that blooms annually in several regions of Brazil. This species is still little explored in terms of phytocompounds in all organs of this plant, especially the floral organ. Flowers of T. granulosa were collected in the municipality of Rio Verde, Goiás, Brazil, in 2021. The hydroethanolic floral extract was prepared by maceration and qualitative phytochemical (colorimetric reactions and salt formation) and antibacterial analyzes performed and the results expressed in millimeters of inhibition at different concentrations in mg mL-1. Several phytochemical classes were observed with positive results, especially for alkaloids, phenolics, oxylates, saponins, carbohydrates and tannins. As for the bacterial assay, potential antibacterial activity was observed for all bacterial strains tested, except for Salmonella serovar Thyphymurium and serovar Enteritidis. Expressive inhibitions were observed for Enterococcus faecalis > Pseudomonas aeruginosa > Staphylococcus aureus and Escherichia coli at the highest concentrations between 100-50 mg mL-1. The floral extract of Tibouchina granulosa showed phytotherapeutic potential with the presence of several phytochemical groups and expressive antibacterial activity.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1294
Author(s):  
Sandeep T. Atkore ◽  
Giribala M. Bondle ◽  
Pranita V. Raithak ◽  
Vinod T. Kamble ◽  
Ravi Varala ◽  
...  

The synthesis of 14-aryl 14H-dibenzo[a,j]xanthenes is achieved by a simple condensation reaction between β-naphthol with aryl or alkyl aldehydes in an effective synergetic catalytic system created by combining basic bleaching earth clay and PEG-600. The advantages of the present method include catalyst recyclability, superior product yield, a shorter reaction time and the avoidance of hazardous reagents. Synthesized xanthene derivatives were also screened for their antibacterial activity against Staphylococcus aureus (MTCC 96) and Pseudomonas aeruginosa (Wild).


Author(s):  
Saffiya Banu. A ◽  
Sheila John ◽  
Sarah Jane Monica ◽  
Saraswathi. K ◽  
Arumugam. P

Recent research studies indicate the role of functional foods in preventing the development of complications associated with type 2 diabetes mellitus. Chia seeds are an excellent source of dietary fibre, essential fatty acids, micronutrients and non-nutritive components. The objective of the study was to evaluate the antioxidant, antibacterial, antidiabetic and anti-inflammatory potential of chia seeds. TPC and TFC were estimated using Folin-Ciocalteu Reagent and Alumininum Chloride method. The antioxidant activity was determined using DPPH● radical, ABTS●+ radical, Superoxide (O2-) radical, Fe3+ reducing and phosphomolybdenum reduction assay. Agar well diffusion method was used to determine the antibacterial activity against Escherichia coli, Proteus vulgaris, Shigella flexneri, Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus. Antidiabetic and anti-inflammatory activities were evaluated using alpha amylase inhibition assay and heat induced haemolysis method. Volatile functional compounds were identified using Gas chromatography mass spectrometry. Upon quantification, TPC and TFC were found to be 850.67±14.14µg/mg GAE and 171.21±12.86µg/mg QE. Free radical scavenging activity of chia seeds was ranked in the order of DPPH● radical >ABTS●+ radical > Superoxide (O2-) radical. The capability of chia seeds to function as electron donors was evident through its strong reducing power. With regard to antibacterial activity, maximum inhibition was observed for Staphylococcus aureus, with a zone of inhibition of 31mm at 500µg/mL. Results of antidiabetic assay highlighted the alpha amylase inhibitory action of chia seeds with an IC50 value of 121.46µg/mL. The anti-inflammatory activity of chia seeds increased linearly in a dose dependent manner. GC-MS analysis showed the presence of functionally active compounds such as coumarine, napthoquinone, phytol, fatty acids, flavone and flavone derivatives. Findings of the study highlight that chia seeds have several essential therapeutic properties. Furthermore, clinical studies are required to validate the role of chia seeds in preventing the development of complications associated with type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document