scholarly journals Ecology of Ixodes pacificus Ticks and Associated Pathogens in the Western United States

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Molly McVicar ◽  
Isabella Rivera ◽  
Jeremiah B. Reyes ◽  
Monika Gulia-Nuss

Lyme disease is the most important vector-borne disease in the United States and is increasing in incidence and geographic range. In the Pacific west, the western black-legged tick, Ixodes pacificus Cooley and Kohls, 1943 is an important vector of the causative agent of Lyme disease, the spirochete, Borrelia burgdorferi. Ixodes pacificus life cycle is expected to be more than a year long, and all three stages (larva, nymph, and adult) overlap in spring. The optimal habitat consists of forest cover, cooler temperatures, and annual precipitation in the range of 200–500 mm. Therefore, the coastal areas of California, Oregon, and Washington are well suited for these ticks. Immature stages commonly parasitize Western fence lizards (Sceloporus occidentalis) and gray squirrels (Sciurus griseus), while adults often feed on deer mice (Peromyscus maniculatus) and black-tailed deer (Odocoileus h. columbianus). Ixodes pacificus carry several pathogens of human significance, such as Borrelia burgdorferi, Bartonella, and Rickettsiales. These pathogens are maintained in the environment by many hosts, including small mammals, birds, livestock, and domestic animals. Although a great deal of work has been carried out on Ixodes ticks and the pathogens they transmit, understanding I. pacificus ecology outside California still lags. Additionally, the dynamic vector–host–pathogen system means that new factors will continue to arise and shift the epidemiological patterns within specific areas. Here, we review the ecology of I. pacificus and the pathogens this tick is known to carry to identify gaps in our knowledge.

2016 ◽  
Vol 54 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Elitza S. Theel

Lyme disease prevails as the most commonly transmitted tick-borne infection in the United States, and serologic evaluation for antibodies toBorrelia burgdorferiremains the recommended modality for diagnosis. This review presents a brief historical perspective on the evolution of serologic assays for Lyme disease and provides a summary of the performance characteristics for the currently recommended two-tiered testing algorithm (TTTA). Additionally, a recently proposed alternative to the traditional TTTA is discussed, and novel methodologies, including immuno-PCR and metabolic profiling for Lyme disease, are outlined.


2009 ◽  
Vol 78 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Sarojini Adusumilli ◽  
Carmen J. Booth ◽  
Juan Anguita ◽  
Erol Fikrig

ABSTRACT Lyme disease is the most common tick-borne illness in the United States. In this paper we explore the contribution of Ixodes scapularis ticks to the pathogenicity of Borrelia burgdorferi in mice. Previously we demonstrated that an isolate of B. burgdorferi sensu stricto (designated N40), passaged 75 times in vitro (N40-75), was infectious but was no longer able to cause arthritis and carditis in C3H mice. We now show that N40-75 spirochetes can readily colonize I. scapularis and multiply during tick engorgement. Remarkably, tick-transmitted N40-75 spirochetes cause disease in mice. N40-75 spirochetes isolated from these animals also retained their pathogenicity when subsequently administered to mice via syringe inoculation. Array analysis revealed that several genes associated with virulence, including bba25, bba65, bba66, bbj09, and bbk32, had higher expression levels in the tick-passaged N40-75 spirochete. These data suggest that transmission of a high-passage attenuated isolate of B. burgdorferi by the arthropod vector results in the generation of spirochetes that have enhanced pathogenesis in mice.


2016 ◽  
Vol 2016 ◽  
pp. 1-3 ◽  
Author(s):  
Abhishek Chaturvedi ◽  
Keith Baker ◽  
Donald Jeanmonod ◽  
Rebecca Jeanmonod

Lyme disease is a tick-transmitted multisystem inflammatory disease caused by the spirocheteBorrelia burgdorferi. With more than 25,000 CDC reported cases annually, it has become the most common vector-borne disease in the United States. We report a case of 38-year-old man with Lyme disease presenting with simultaneous palsy of 3rd, 5th, 7th, 9th, and 10th cranial nerves.


Author(s):  
Sin Hang Lee ◽  
John Eoin Healy ◽  
John S Lambert

Lyme disease, initially described as Lyme arthritis, was reported before nucleic-acid based detection technologies were available. The most widely used diagnostic tests for Lyme disease are based on the serologic detection of antibodies produced against antigens derived from a single strain of Borrelia burgdorferi. The poor diagnostic accuracy of serological tests early in the infection process has been noted most recently in the 2018 Report to Congress issued by the U.S. Department of Health and Human Services Tick-Borne Disease Working Group. Clinical Lyme disease may be caused by a diversity of borreliae, including those classified as relapsing fever species, in the United States and in Europe. It is widely accepted that antibiotic treatment of Lyme disease is most successful during this critical early stage of infection. While genomic sequencing is recognized as an irrefutable direct detection method for laboratory diagnosis of Lyme borreliosis, development of a molecular diagnostic tool for all clinical forms of borreliosis is challenging because a “core genome” shared by all pathogenic borreliae has not yet been identified. After a diligent search of the GenBank database, we identified two highly conserved segments of DNA sequence among the borrelial 16S rRNA genes. We further developed a pair of Borrelia genus-specific PCR primers for amplification of a segment of borrelial 16S rRNA gene as a “core genome” to be used as the template for routine Sanger sequencing-based metagenomic direct detection test. This study presented examples of base-calling DNA sequencing electropherograms routinely generated in a clinical diagnostic laboratory on DNA extracts of human blood specimens and ticks collected from human skin bites and from the environment. Since some of the tick samples tested were collected in Ireland, borrelial species or strains not known to exist in the United States were also detected by analysis of this 16S rRNA “core genome”. We recommend that hospital laboratories located in Lyme disease endemic areas begin to use a “core genome” sequencing test to routinely diagnose spirochetemia caused by various species of borreliae for timely management of patients at the early stage of infection.


2020 ◽  
Vol 5 (6) ◽  
pp. 224-230
Author(s):  
I.V. Trefanenko ◽  
◽  
L.I. Tymofiichuk ◽  
S.I. Grechko ◽  
T.V. Reva ◽  
...  

The list of human infectious diseases has recently significantly expanded due to new focal infections that are transmitted by the bite of blood-sucking arthropods. Ixodes ticks borrelioses, including Lyme disease, remain the most common naturally occurring transmissible infection in the United States, Europe, and Ukraine in particular. Material and methods. For the last 10 years in Ukraine there has been a tendency to increase the incidence of Lyme disease with an intensive rate from 0.12 in 2000 to 6.45 in 2016. The incidence of Lyme disease in Chernivtsi region during the period under analysis increased by 30 (with an increase in the intensive rate from 0.11% in 2000 to 3.31% in 2016). The purpose of the work was to investigate the prevalence of Ixodes ticks, including positive findings on Borrelia burgdorferi in Chernivtsi region for the period of 2018-2019. Results and discussion. We used the common division of Chernivtsi region into landscape-geographical zones. According to its relief, the territory of Chernivtsi region is divided into a mountain zone (the Bukovynian Carpathians), foothills (Prut-Sirets interfluve) and plain (Prut-Dniester interfluve, forest-steppe zone). We analyzed indicators of the relative number of Ixodes ticks in landscape-geographical areas and the percentage of Ixodes ticks with positive findings, i.e. those that carry the pathogenic Borrelia burgdorferi. Statistical analysis of the obtained data was performed by the method of determining the confidence interval, the level of probability was taken as p≤0.05. The data comparison obtained in 2018 and 2019 showed that during the study period there was a significant increase in the number of ticks that transmit pathogenic Borrelia, in all regions except the mountain zone, especially prominent in the foothills of the Carpathians. Using statistics data, risk of detection was calculated, which is interpreted as the risk of Lyme disease infection when bitten by a tick. When comparing the zones of the foothills of the Carpathians (19.5%) and the Carpathian Mountains (21%) in 2018 the risk of detection was established at 0.92 [0.63-1.36], and in 2019 – the foothills of the Carpathians (41%) and the Carpathian Mountains (15%), respectively, risk of detection equaled 2.7 [1.66-4.41]. The risk of detection of 1.4 [1.66-4.41] was set for both years. When comparing the foothills of the Carpathians (19.5%) and the Forest-Steppe zone (13.5%) in 2018, the risk of detection was 1.44 [1.01-2.06], and in 2019 - the Foothills of the Carpathians (41%) and the Forest-Steppe zone (24%), respectively, risk of detection – 1.56 [1,17-2,09]. The risk of detection of 1.5 [1.2-1.89] was set for both years. During the next stage of the study, we compared the prevalence of Ixodes ticks, which could cause borreliosis, with bacterial contamination of water in the relevant areas. We found a reliable correlation of medium strength between bacterial contamination of water and the percentage of infected ticks – Cramer coefficient was 0.37. Conclusion. Thus, we found an increase in the number of Ixodes ticks, including Borrelia burgdorferi, in Chernivtsi region over the past two years. The risk of infection with borreliosis from Ixodes ticks had a significant increase and extended from the Forest-Steppe zone to the Foothills and the Carpathian Mountains in the period from 2018 till 2019. A significant correlation was found between bacterial water contamination and the percentage of infected Ixodes ticks in Chernivtsi region


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Erika T Machtinger ◽  
Scott C Williams

Abstract Arthropods pests are most frequently associated with both plants and vertebrate animals. Ticks, in particular the blacklegged ticks Ixodes scapularis Say and Ixodes pacificus Cooley & Kohls (Acari: Ixodidae), are associated with wildlife hosts and are the primary vectors of Lyme disease, the most frequently reported vector-borne disease in the United States. Immature blacklegged ticks in the eastern United States frequently use small mammals from the genus Peromyscus as hosts. These mice are competent reservoirs for Borrelia burgdorferi, the causative agent of Lyme disease, as well as other tick-borne pathogens. To conduct surveillance on immature ticks and pathogen circulation in hosts, capture and handling of these small mammals is required. While protocols for rearing and pest surveillance on plants are common, there are very few protocols aimed at entomologists to conduct research on vertebrate–arthropod relationships. The goal of this manuscript is to provide a practical template for trapping Peromyscus spp. for vector and vector-borne pathogen surveillance and ecology for professionals that may not have a background in wildlife research. Important considerations are highlighted when targeting P. leucopus Rafinesque and P. maniculatus Wagner. Specifically, for tick and tick-borne disease-related projects, materials that may be required are suggested and references and other resources for researchers beginning a trapping study are provided.


Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 833-849
Author(s):  
Wei-Gang Qiu ◽  
Daniel E Dykhuizen ◽  
Michael S Acosta ◽  
Benjamin J Luft

Abstract Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed “founder effects” for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks.


mBio ◽  
2021 ◽  
Author(s):  
Jenny Wachter ◽  
Craig Martens ◽  
Kent Barbian ◽  
Ryan O. M. Rego ◽  
Patricia Rosa

The principal causative agent of Lyme disease in humans in the United States is Borrelia burgdorferi , while B. burgdorferi , B. afzelii , and B. garinii , collectively members of the Borrelia burgdorferi sensu lato species complex, cause Lyme disease in Europe and Asia. Two plasmid-encoded restriction/modification systems have been shown to limit the genetic transformation of B. burgdorferi type strain B31 with foreign DNA, but little is known about the restriction/modification systems of other Lyme disease Borrelia bacteria.


2011 ◽  
Vol 77 (10) ◽  
pp. 3244-3254 ◽  
Author(s):  
N. H. Ogden ◽  
G. Margos ◽  
D. M. Aanensen ◽  
M. A. Drebot ◽  
E. J. Feil ◽  
...  

ABSTRACTThe genetic diversity ofBorrelia burgdorferisensu stricto, the agent of Lyme disease in North America, has consequences for the performance of serological diagnostic tests and disease severity. To investigateB. burgdorferidiversity in Canada, where Lyme disease is emerging, bacterial DNA in 309 infected adultIxodes scapularisticks collected in surveillance was characterized by multilocus sequence typing (MLST) and analysis of outer surface protein C gene (ospC) alleles. Six ticks carriedBorrelia miyamotoi, and one tick carried the novel speciesBorrelia kurtenbachii. 142 ticks carriedB. burgdorferisequence types (STs) previously described from the United States. Fifty-eight ticks carriedB. burgdorferiof 1 of 19 novel or undescribed STs, which were single-, double-, or triple-locus variants of STs first described in the United States. Clonal complexes with founder STs from the United States were identified. SeventeenospCalleles were identified in 309B. burgdorferi-infected ticks. Positive and negative associations in the occurrence of different alleles in the same tick supported a hypothesis of multiple-niche polymorphism forB. burgdorferiin North America. Geographic analysis of STs andospCalleles were consistent with south-to-north dispersion of infected ticks from U.S. sources on migratory birds. These observations suggest that the genetic diversity ofB. burgdorferiin eastern and central Canada corresponds to that in the United States, but there was evidence for founder events skewing the diversity in emerging tick populations. Further studies are needed to investigate the significance of these observations for the performance of diagnostic tests and clinical presentation of Lyme disease in Canada.


Sign in / Sign up

Export Citation Format

Share Document