scholarly journals Delaying Effects of Prolactin and Growth Hormone on Aging Processes in Bovine Oocytes Matured In Vitro

2021 ◽  
Vol 14 (7) ◽  
pp. 684
Author(s):  
Galina N. Singina ◽  
Ekaterina N. Shedova ◽  
Alexander V. Lopukhov ◽  
Olga S. Mityashova ◽  
Irina Y. Lebedeva

Aging processes accelerate dramatically in oocytes that have reached the metaphase-II (M-II) stage. The present work aimed to study the patterns and intracellular pathways of actions of prolactin (PRL) and growth hormone (GH) on age-associated changes in bovine M-II oocytes aging in vitro. To this end, we analyzed spontaneous parthenogenetic activation (cytogenetic assay), apoptosis (TUNEL assay), and the developmental capacity (IVF/IVC) of in vitro-matured oocytes after prolonged culturing. Both PRL and GH reduced the activation rate of aging cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs), and their respective hormone receptors were revealed in the ova. The inhibitor of Src-family tyrosine kinases PP2 eliminated the effects of PRL and GH on meiotic arrest in DOs, whereas the MEK inhibitor U0126 only abolished the PRL effect. Furthermore, PRL was able to maintain the apoptosis resistance and developmental competence of aging CEOs. The protein kinase C inhibitor calphostin C suppressed both the actions of PRL. Thus, PRL and GH can directly support meiotic arrest in aging M-II oocytes by activating MAP kinases and/or Src-family kinases. The effect of PRL in maintaining the developmental capacity of aging oocytes is cumulus-dependent and related to the pro-survival action of the protein kinase C-mediated signal pathway.

2000 ◽  
Vol 33 (4) ◽  
pp. 601-608 ◽  
Author(s):  
Shwu-Bin Lin ◽  
Li-Ching Wu ◽  
Siao-Ling Huang ◽  
Hui-Lun Hsu ◽  
Sung-Hwa Hsieh ◽  
...  

1988 ◽  
Vol 263 (26) ◽  
pp. 13223-13230 ◽  
Author(s):  
K L Leach ◽  
E A Powers ◽  
J C McGuire ◽  
L Dong ◽  
S C Kiley ◽  
...  

2010 ◽  
Vol 24 (6) ◽  
pp. 2077-2092 ◽  
Author(s):  
Yolande Kroviarski ◽  
Maya Debbabi ◽  
Rafik Bachoual ◽  
Axel Pe´rianin ◽  
Marie‐Anne Gougerot‐Pocidalo ◽  
...  

2007 ◽  
Vol 192 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Mattias Gäreskog ◽  
Parri Wentzel

Malformations and growth disturbances are two- to threefold more common in infants of diabetic mothers than in offspring of non-diabetic pregnancy. Several suggestions have emerged to explain the reasons for diabetic embryopathy, including enhanced mitochondrial production of reactive oxygen species leading to altered activation of protein kinase C. This study aimed to evaluate the effect of α-cyano-4-hydroxycinnamic acid (CHC) and N-acetylcysteine (NAC) addition on morphology and activity of protein kinase C-δ and protein kinase C-ζ in rat embryos exposed to a high glucose concentration in vitro. Day 9 embryos from normal rats were cultured in 10 or 30 mM glucose concentrations with or without supplementation of CHC, NAC, or protein kinase C inhibitors specific for protein kinase C-δ and protein kinase C-ζ. Embryos were evaluated for malformations, crown rump length, and somite number. Protein kinase C-δ and protein kinase C-ζ activities were estimated by western blot by separating membranous and cytosolic fractions of the embryo. We found increased malformations and growth retardation in embryos cultured in high versus low glucose concentrations. These abnormalities were diminished when CHC and NAC or specific protein kinase C-inhibitors were added to the culture medium. The activities of embryonic protein kinase C-δ and protein kinase C-ζ were increased in the high glucose environment after 24-h culture, but were normalized by the addition of CHC and NAC as well as respective inhibitor to the culture medium. These findings suggest that mitochondrial overproduction of reactive oxygen species is involved in diabetic embryopathy. Furthermore, such overproduction may affect embryonic development, at least partly, by enhancing the activities of protein kinase C-δ and protein kinase C-ζ.


2000 ◽  
Vol 78 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Anderson OL Wong ◽  
Wen Sheng Li ◽  
Eric KY Lee ◽  
Mei Yee Leung ◽  
Lai Yin Tse ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPAC1 receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.Key words: PACAP, VIP, PAC1 receptor, VPAC1 receptor, VPAC2 receptor, growth hormone, gonadotropin-II, cAMP, protein kinase A, protein kinase C, calcium, pituitary cells, goldfish, and teleost.


Sign in / Sign up

Export Citation Format

Share Document