scholarly journals Modeling Bacterial Attachment Mechanisms on Superhydrophobic and Superhydrophilic Substrates

2021 ◽  
Vol 14 (10) ◽  
pp. 977
Author(s):  
T. Brian Cavitt ◽  
Niyati Pathak

Superhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) dispersions but do affirm that polar (acid-base) interactions (ΔGAB) are often more significant than nonpolar (Lifshitz-van der Waals) interactions (ΔGLW). Classical DLVO theory alone also fails to address all colloidal interactions present in bacterial dispersions such as ΔGAB and Born repulsion (ΔGBorn) yet accounts for the significant electrostatic double layer repulsion (ΔGEL). We purpose to model both motile (e.g., P. aeruginosa and E. coli) and nonmotile (e.g., S. aureus and S. epidermidis) bacterial attachment to both superhydrophilic and superhydrophobic substrates via surface energies and extended DLVO theory corrected for bacterial geometries. We used extended DLVO theory and surface energy analyses to characterize the following Gibbs interaction energies for the bacteria with superhydrophobic and superhydrophilic substrates: ΔGLW, ΔGAB, ΔGEL, and ΔGBorn. The combination of the aforementioned interactions yields the total Gibbs interaction energy (ΔGtot) of each bacterium with each substrate. Analysis of the interaction energies with respect to the distance of approach yielded an equilibrium distance (deq) that seems to be independent of both bacterial species and substrate. Utilizing both deq and Gibbs interaction energies, substrates could be designed to inhibit bacterial attachment.

2001 ◽  
Vol 64 (4) ◽  
pp. 493-497 ◽  
Author(s):  
K. WARRINER ◽  
K. EVELEIGH ◽  
J. GOODMAN ◽  
G. BETTS ◽  
M. GONZALES ◽  
...  

The extent to which a bacterial cocktail containing equal numbers of Pseudomonas fragi NCTC 10689, Listeria monocytogenes BL5/2, Salmonella Typhimurium LT2, and Escherichia coli JM 109 attached to loin surface cuts (7 by 5 cm) derived from steam-pasteurized beef carcasses has been evaluated. The extent of attachment was categorized as loosely attached (removed by rinsing), firmly attached (released by stomaching), and irreversibly bound. No significant difference (P > 0.10) in the attachment of bacteria to steam-pasteurized carcasses was found compared with control loin samples that had received no treatment. No significant difference (P > 0.05) was also found in the attachment strength between the different bacterial species tested. Most bacteria inoculated onto the loin cuts were reversibly bound, since they had been removed by rinsing and stomaching. The irreversible attachment of bacteria to loin cuts was found to vary significantly (P < 0.01) among the different carcass sets used but was independent of whether the carcass had undergone steam pasteurization treatment. Use of a bioluminescent strain of E. coli showed that cells bound preferentially to cut edges and convoluted areas on the loin surface and could not be removed by rinsing. The possible mechanisms of bacterial attachment and the suitability of steam pasteurization to remove contamination incurred during slaughter are discussed.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


2020 ◽  
Vol 20 (29) ◽  
pp. 2681-2691
Author(s):  
Athina Geronikaki ◽  
Victor Kartsev ◽  
Phaedra Eleftheriou ◽  
Anthi Petrou ◽  
Jasmina Glamočlija ◽  
...  

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3. Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity. Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed. Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.


Author(s):  
Angélique Buton ◽  
Louis-Marie Bobay

Abstract Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex allows bacteria to repair DNA double strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis and Staphylococcus aureus. In this study we detected putative Chi motifs in a large dataset of Proteobacteria and we identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria.


2021 ◽  
Vol 11 (2) ◽  
pp. 541
Author(s):  
Katarzyna Grudlewska-Buda ◽  
Krzysztof Skowron ◽  
Ewa Wałecka-Zacharska ◽  
Natalia Wiktorczyk-Kapischke ◽  
Jarosław Bystroń ◽  
...  

Mastitis is a major economic problem in dairy herds, as it might decrease fertility, and negatively affect milk quality and milk yield. Out of over 150 bacterial species responsible for the udder inflammation, Escherichia coli is one of the most notable. This study aimed to assess antimicrobial susceptibility, resistance to dipping agents and biofilm formation of 150 E. coli strains isolated from milk of cows with subclinical and clinical mastitis. The strains came from three dairy herds located in Northern and Central Poland. The statistical analyses were performed with post-hoc Bonferroni test and chi-square test (including Yates correction). The data with a p value of <0.05 were considered significant. We found that the tested strains were mostly sensitive to antimicrobials and dipping agents. It was shown that 37.33% and 4.67% of strains were resistant and moderately resistant to at least one antimicrobial agent, respectively. No extended-spectrum beta-lactamases (ESBL)-producing E. coli were detected. The majority of strains did not possess the ability to form biofilm or formed a weak biofilm. The strong biofilm formers were found only among strains derived from cows with subclinical mastitis. The lowest bacteria number was noted for subclinical mastitis cows’ strains, after stabilization with iodine (3.77 log CFU × cm−2) and chlorhexidine (3.96 log CFU × cm−2) treatment. In the present study, no statistically significant differences in susceptibility to antibiotics and the ability to form biofilm were found among the strains isolated from cows with subclinical and clinical mastitis. Despite this, infections in dairy herds should be monitored. Limiting the spread of bacteria and characterizing the most common etiological factors would allow proper treatment.


2014 ◽  
Vol 81 (1) ◽  
pp. 130-138 ◽  
Author(s):  
James Kirby ◽  
Minobu Nishimoto ◽  
Ruthie W. N. Chow ◽  
Edward E. K. Baidoo ◽  
George Wang ◽  
...  

ABSTRACTTerpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of adxsdeletion inEscherichia coligrown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-typeE. coliyajOgene, annotated as a putative xylose reductase, or via various mutations in the nativeribBgene.In vitroanalysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway inE. colifor production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP.


2002 ◽  
Vol 68 (9) ◽  
pp. 4604-4612 ◽  
Author(s):  
Catherine A. Axtell ◽  
Gwyn A. Beattie

ABSTRACT We constructed and characterized a transcriptional fusion that measures the availability of water to a bacterial cell. This fusion between the proU promoter from Escherichia coli and the reporter gene gfp was introduced into strains of E. coli, Pantoea agglomerans, and Pseudomonas syringae. The proU-gfp fusion in these bacterial biosensor strains responded in a quantitative manner to water deprivation caused by the presence of NaCl, Na2SO4, KCl, or polyethylene glycol (molecular weight, 8000). The fusion was induced to a detectable level by NaCl concentrations of as low as 10 mM in all three bacterial species. Water deprivation induced proU-gfp expression in both planktonic and surface-associated cells; however, it induced a higher level of expression in the surface-associated cells. Following the introduction of P. agglomerans biosensor cells onto bean leaves, the cells detected a significant decrease in water availability within only 5 min. After 30 min, the populations were exposed, on average, to a water potential equivalent to that imposed by approximately 55 mM NaCl. These results demonstrate the effectiveness of a proU-gfp-based biosensor for evaluating water availability on leaves. Furthermore, the inducibility of proU-gfp in multiple bacterial species illustrates the potential for tailoring proU-gfp-based biosensors to specific habitats.


2012 ◽  
Vol 287 (42) ◽  
pp. 35092-35103 ◽  
Author(s):  
Yizhou Zhou ◽  
Daniel Smith ◽  
Bryan J. Leong ◽  
Kristoffer Brännström ◽  
Fredrik Almqvist ◽  
...  

Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2, and Citrobacter koseri were able to cross-seed in vitro. The polymerization of Escherichia coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA was secreted from E. coli csgB− mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA was secreted by S. typhimurium csgB− mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.


2001 ◽  
Vol 67 (1) ◽  
pp. 142-147 ◽  
Author(s):  
Henrik Stender ◽  
Adam J. Broomer ◽  
Kenneth Oliveira ◽  
Heather Perry-O'Keefe ◽  
Jens J. Hyldig-Nielsen ◽  
...  

ABSTRACT A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturableEscherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35°C, individual microcolonies of E. coliwere detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targetingP. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other thanE. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.


Sign in / Sign up

Export Citation Format

Share Document