scholarly journals Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System

2010 ◽  
Vol 3 (5) ◽  
pp. 1694-1710 ◽  
Author(s):  
Ronald Anderson ◽  
Gregory Tintinger ◽  
Riana Cockeran ◽  
Moliehi Potjo ◽  
Charles Feldman
2020 ◽  
pp. 307-314
Author(s):  
Paul Bowness

The innate immune system comprises evolutionarily ancient mechanisms that mediate first-line responses against microbial pathogens, and are also important in priming and execution of adaptive immune responses, and in defence against tumours. These responses, which recognize microbial non-self, damaged self, and absent self, are characterized by rapidity of action and they involve various different cell types, cell-associated receptors, and soluble factors. Previously thought to lack plasticity or memory, certain innate immune responses have recently been shown to be capable of ‘learning’ or ‘training’. Most cells of the innate immune system are derived from the myeloid precursors in the bone marrow. These include monocytes and their derivatives—macrophages and dendritic cells, blood granulocytes (neutrophils, basophils, and eosinophils), and tissue mast cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhen Wang ◽  
Ying Zheng

The innate immune system is the first line of defense against microbial pathogens. The activated innate immune system plays important roles in eliciting antimicrobial defenses. Despite the benefits of innate immune responses, excessive inflammation will cause host damage. Thus, tight regulation of these processes is required for the maintenance of immune homeostasis. Recently, a new class of long noncoding RNAs (lncRNAs) has emerged as important regulators in many physiological and pathological processes. Dysregulated lncRNAs have been found to be associated with excessive or uncontrolled inflammation. In this brief review, we summarize the roles of functional lncRNAs in regulating innate immune responses. We also discuss the roles of lncRNAs in macrophage polarization, an important molecular event in the innate immune responses.


2004 ◽  
Vol 75 (5) ◽  
pp. 749-755 ◽  
Author(s):  
Mihai G. Netea ◽  
Chantal Van der Graaf ◽  
Jos W. M. Van der Meer ◽  
Bart Jan Kullberg

Author(s):  
Paul Bowness

The innate immune system comprises evolutionarily ancient mechanisms that mediate first-line responses against microbial pathogens, and are also important in priming and execution of adaptive immune responses, and in defence against tumours. These responses, which recognize microbial non-self, damaged self, and absent self, are characterized by rapidity of action and lack of plasticity, ‘learning’, or memory, and they involve various different cell types, cell-associated receptors, and soluble factors....


2016 ◽  
Vol Volume 112 (Number 1/2) ◽  
Author(s):  
Jan G. Nel ◽  
Annette J. Theron ◽  
Roger Pool ◽  
Chrisna Durandt ◽  
Gregory R. Tintinger ◽  
...  

Abstract The human innate immune system is indispensable for protection against potentially invasive microbial and viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these cells. The current review is focused on the mechanisms of NETosis and the role of this process in host defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Todd V. Brennan ◽  
Keri E. Lunsford ◽  
Paul C. Kuo

Studies of the immune mechanisms of allograft rejection have predominantly focused on the adaptive immune system that includes T cells and B cells. Recent investigations into the innate immune system, which recognizes foreign antigens through more evolutionarily primitive pathways, have demonstrated a critical role of the innate immune system in the regulation of the adaptive immune system. Innate immunity has been extensively studied in its role as the host's first-line defense against microbial pathogens; however, it is becoming increasingly recognized for its ability to also recognize host-derived molecules that result from tissue damage. The capacity of endogenous damage signals acting through the innate immune system to lower immune thresholds and promote immune recognition and rejection of transplant grafts is only beginning to be appreciated. An improved understanding of these pathways may reveal novel therapeutic targets to decrease graft alloreactivity and increase graft longevity.


2000 ◽  
Vol 21 (2-3) ◽  
pp. 341-344 ◽  
Author(s):  
Peter S. Tobias ◽  
Hyun-ku Lee ◽  
Sally Orr ◽  
Katrin Soldau ◽  
Richard Tapping

Sign in / Sign up

Export Citation Format

Share Document