scholarly journals A New Hope: Self-Assembling Peptides with Antimicrobial Activity

Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 166 ◽  
Author(s):  
Lucia Lombardi ◽  
Annarita Falanga ◽  
Valentina Del Genio ◽  
Stefania Galdiero

Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 268 ◽  
Author(s):  
Andreia Jorge ◽  
Ramon Eritja

Molecular self-assembling is ubiquitous in nature providing structural and functional machinery for the cells. In recent decades, material science has been inspired by the nature’s assembly principles to create artificially higher-order structures customized with therapeutic and targeting molecules, organic and inorganic fluorescent probes that have opened new perspectives for biomedical applications. Among these novel man-made materials, DNA nanostructures hold great promise for the modular assembly of biocompatible molecules at the nanoscale of multiple shapes and sizes, designed via molecular programming languages. Herein, we summarize the recent advances made in the designing of DNA nanostructures with special emphasis on their application in biomedical research as imaging and diagnostic platforms, drug, gene, and protein vehicles, as well as theranostic agents that are meant to operate in-cell and in-vivo.


MRS Advances ◽  
2016 ◽  
Vol 1 (11) ◽  
pp. 711-716 ◽  
Author(s):  
Robabeh Gharaei ◽  
Giuseppe Tronci ◽  
Robert P. Davies ◽  
Parikshit Goswami ◽  
Stephen J. Russell

ABSTRACTSelf-assembling peptides (SAPs) have the ability to spontaneously assemble into ordered nanostructures enabling the manufacture of ‘designer’ nanomaterials. The reversible molecular association of SAPs has been shown to offer great promise in therapeutics via for example, the design of biomimetic assemblies for hard tissue regeneration. This could be further exploited for novel nano/micro diagnostic tools. However, self-assembled peptide gels are often associated with inherent weak and transient mechanical properties. Their incorporation into polymeric matrices has been considered as a potential strategy to enhance their mechanical stability. This study focuses on the incorporation of an 11-residue peptide, P11-8 (peptide sequence: CH3CO-Gln-Gln-Arg-Phe-Orn-Trp-Orn-Phe-Glu-Gln-Gln-NH2) within a fibrous scaffold of poly (ε-caprolactone) (PCL). In this study an electrospinning technique was used to fabricate a biomimetic porous scaffold out of a solution of P11-8 and PCL which resulted in a biphasic structure composed of submicron fibers (diameter of 100-700 nm) and nanofibers (diameter of 10-100 nm). The internal morphology of the fabric and its micro-structure can be easily controlled by changing the peptide concentration. The secondary conformation of P11-8 was investigated in the as-spun fibers by ATR-FTIR spectroscopy and it is shown that peptide self-assembly into β-sheet tapes has taken place during fiber formation and the deposition of the fibrous web.


2019 ◽  
Vol 10 ◽  
pp. 1894-1901 ◽  
Author(s):  
Yongcai You ◽  
Ruirui Xing ◽  
Qianli Zou ◽  
Feng Shi ◽  
Xuehai Yan

Peptide-based supramolecular hydrogels, as a new type of biological nanoarchitectonic structure, hold great promise for a wide range of biomedical and nanotechnological applications, such as tissue engineering, drug delivery, and electronic and photonic energy storage. In this work, a cyclic dipeptide (CDP) cyclo-(Trp-Tyr) (C-WY), which has exceptional structural rigidity and high stability, is selected as a hydrogelator for the formation of supramolecular hydrogels. The unique hydrogen bonding in C-WY endows a high propensity for self-assembly and the resulting hydrogels are revealed to be crystalline. The crystalline hydrogels possess excellent mechanical capacity and superior tolerance to various harsh conditions, including in the presence of charged biopolymers, extreme acid/base environments, and changing thermal conditions. Such high tolerance enables the crystalline hydrogels to be applied in the complex and harsh environments of electrochemistry. In addition, this study demonstrates that the self-assembly of cyclic dipeptides results in highly robust hydrogels which can be applied for electrochemical applications such as electrochemical supercapacitors.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Chun Yin Jerry Lau ◽  
Federico Fontana ◽  
Laurens D. B. Mandemaker ◽  
Dennie Wezendonk ◽  
Benjamin Vermeer ◽  
...  

AbstractSelf-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different β-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis.


2017 ◽  
Vol 53 (60) ◽  
pp. 8455-8458 ◽  
Author(s):  
M. Marín-García ◽  
N. Benseny-Cases ◽  
M. Camacho ◽  
J. Suades ◽  
R. Barnadas-Rodríguez

New photo-CORM metallosomes prepared by a straightforward method from organometallic metallosurfactants and phospholipids show a drastic diminution of cell toxicity.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 220 ◽  
Author(s):  
Lingyun Wang ◽  
Meiying Huang ◽  
Hao Tang ◽  
Derong Cao ◽  
Yu Zhao

Fluorescent magnetic nanoparticles (NPs) utilized for imaging hold great promise for biomedical applications, but it remains a challenging task. Here, we report novel dual-modality NPs using an aggregation-induced emission (AIE)-active and near-infrared (NIR) emissive dye (TPAS) and magnetic Fe3O4 as the core, and biocompatible polymer Pluronic F-127 as the encapsulation matrix by self-assembly procedures. The obtained fluorescent-magnetic AIE NPs have both high fluorescence quantum yield (13.8%) at 700 nm and high magnetic saturation value. With good photostability and biocompatibility, the resulting NPs show effective MRI ability, but also a stain in cytoplasm with a strong NIR fluorescent signal.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6786
Author(s):  
Gulnara Gaynanova ◽  
Leysan Vasileva ◽  
Ruslan Kashapov ◽  
Darya Kuznetsova ◽  
Rushana Kushnazarova ◽  
...  

This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaobin Fang ◽  
Yingqi Xu ◽  
Jinming Zhang ◽  
Xianghong Lu ◽  
Yitao Wang ◽  
...  

A novel amphiphilic derivative of chitosan, namely, a linoleic acid-g-quaternary chitosan (LA-g-QC), was designed and synthesized as low toxic material for biomedical applications in this study. The chemical structure of LA-g-QC was characterized by Fourier transform infrared spectroscopy (FTIR),1H nuclear magnetic resonance (1H-NMR), and elemental analysis. LA-g-QC could form nanosized micelles with self-assembly, which was confirmed by the results of critical micelle concentration (CMC) via fluorescence spectroscopy. The average size of LA-g-QC was 140 nm and its zeta potential was approximately +35.50 mV. CMC value was 31.00 mg/mL. Furthermore, LA-g-QC micelles, at final concentrations between 0.94 μg/mL and 30 μg/mL, did not inhibit the proliferation of HepG2 or SMMC 7721 cell lines. Taken together, LA-g-QC has low cytotoxicity and high potential for the preparation of novel drug-delivery micelles.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Lee Schnaider ◽  
Alexander Rosenberg ◽  
Topaz Kreiser ◽  
Sofiya Kolusheva ◽  
Ehud Gazit ◽  
...  

ABSTRACT The rise of multidrug-resistant pathogens has awakened interest in new drug candidates such as antimicrobial peptides and their derivatives. Recent work suggests that some antimicrobial peptides have the ability to self-assemble into ordered amyloid-like nanostructures which facilitate their antibacterial activity. Here, we evaluate a histatin-based antimicrobial peptide, and its self-assembling derivative, in the interplay between self-assembly, membrane interactions, and antibacterial and antifungal activities. We demonstrate substantial membrane targeting by both peptides, as well as mechanistic insights into this mode of action, which correlates to their antifungal activity and is not affected by their self-assembling state. The ability to self-assemble does, however, significantly affect peptide antibacterial activity against both Gram-negative and Gram-positive bacteria. These results are surprising and hint at important distinctions between antifungal and antibacterial peptide activities in prokaryotes and eukaryotic microbes. IMPORTANCE Antimicrobial peptides are important modulators of host defense against bacterial, fungal, and viral pathogens in humans and other multicellular organisms. Two converging paradigms point to a link between antimicrobial peptides that self-assemble into amyloid-like nanoassemblies and classical amyloidogenic peptides that often have potent broad-spectrum antimicrobial activity, suggesting that antimicrobial and amyloidogenic peptides may represent two sides of the same coin. Here, we asked if the ability of an antifungal peptide to self-assemble affects its antifungal or antibacterial activity. We found that modifications of classical antifungal peptide derivative allowed it to self-assemble and did not alter its antifungal activity, and yet self-assembly substantially increased the antibacterial activity of the peptide. These results support the idea that peptide self-assembly can enhance antibacterial activities and emphasize a distinction between the action of antifungal peptides and that of antibacterial peptides. Accordingly, we suggest that the possible generality of this distinction should be widely tested.


Nanomedicine ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 139-163
Author(s):  
Sonika Chibh ◽  
Jibanananda Mishra ◽  
Avneet Kour ◽  
Virander S Chauhan ◽  
Jiban J Panda

Molecular self-assembly is a widespread natural phenomenon and has inspired several researchers to synthesize a compendium of nano/microstructures with widespread applications. Biomolecules like proteins, peptides and lipids are used as building blocks to fabricate various nanomaterials. Supramolecular peptide self-assembly continue to play a significant role in forming diverse nanostructures with numerous biomedical applications; however, dipeptides offer distinctive supremacy in their ability to self-assemble and produce a variety of nanostructures. Though several reviews have articulated the progress in the field of longer peptides or polymers and their self-assembling behavior, there is a paucity of reviews or literature covering the emerging field of dipeptide-based nanostructures. In this review, our goal is to present the recent advancements in dipeptide-based nanostructures with their potential applications.


Sign in / Sign up

Export Citation Format

Share Document