scholarly journals Optimized Icariin Cubosomes Exhibit Augmented Cytotoxicity against SKOV-3 Ovarian Cancer Cells

Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 20
Author(s):  
Usama A. Fahmy ◽  
Omar Fahmy ◽  
Nabil A. Alhakamy

Clinical application of icariin (ICA) is limited, despite its activity against cancer growth, because of the low solubility of ICA in an aqueous environment. Therefore, the present study attempted to develop and optimize ICA-loaded cubosome delivery and to explore its efficacy and possible mechanism of action against ovarian cancer. The optimization of the cubosome formulation was performed using the Box‒Behnken statistical design; during the characterization, the particle sizes were in the range of 73 to 183 nm and the entrapment efficiency was 78.3% to 97.3%. Optimized ICA-loaded cubosomes (ICA-Cubs) exhibited enhanced cytotoxicity and apoptotic potential, compared with ICA-raw, against ovarian cancer cell lines (SKOV-3 and Caov 3). The optimized ICA-Cubs showed a relatively non-cytotoxic effect on normal EA.hy926 endothelial cells. Further analysis of cell cycle arrest suggested a potential role in the pre-G1 and G2/M phases for ICA-Cubs in comparison with ICA-raw. ICA-Cubs increased the generation of reactive oxygen species (ROS) and the overexpression of p53 and caspase-3 in the SKOV-3 cell line. In conclusion, the cubosomal delivery of ICA might provide a prospective approach towards the superior control of ovarian cancer cell growth. Its improved efficacy compared with that of the free drug might be due to the improved solubility and cellular permeability of ICA.

2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Li ◽  
Jie Yang ◽  
Ben Yang ◽  
Guoqing Zhao ◽  
Hai Lin ◽  
...  

Ketamine is widely used for cancer pain treatment in clinic, and has been shown to inhibit various tumor cells growth. However, the effect of ketamine on ovarian cancer cells growth and the downstream molecules has not been defined. In the present study, we found that ketamine significantly inhibited the proliferation and survival of six ovarian cancer cell lines. Moreover, ketamine induced ovarian cancer cell cycle arrest, apoptosis, and inhibited colony formation capacity. Since lncRNAs have been identified as key regulators of cancer development, we performed bioinformatics analysis of a GEO dataset and found fourteen significantly altered lncRNAs in ovarian cancer patients. We then investigated the effect of ketamine on these lncRNAs, and found that ketamine regulated the expression of lncRNA PVT1. Mechanistically, ketamine regulated P300-mediated H3K27 acetylation activation in the promoter of PVT1. Our RNA immunoprecipitation experiment indicated that PVT1 bound histone methyltransferase enhancer of zeste homolog 2 (EZH2), and regulated the expression of target gene, including p57, and consequently altered ovarian cancer cell biology. Our study revealed that ketamine could be a potential therapeutic strategy for ovarian cancer patients.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2061
Author(s):  
Cecilia Pozzi ◽  
Matteo Santucci ◽  
Gaetano Marverti ◽  
Domenico D’Arca ◽  
Lorenzo Tagliazucchi ◽  
...  

Combining drugs represent an approach to efficiently prevent and overcome drug resistance and to reduce toxicity; yet it is a highly challenging task, particularly if combinations of inhibitors of the same enzyme target are considered. To show that crystallographic and inhibition kinetic information can provide indicators of cancer cell growth inhibition by combinations of two anti-human thymidylate synthase (hTS) drugs, we obtained the X-ray crystal structure of the hTS:raltitrexed:5-fluorodeoxyuridine monophosphate (FdUMP) complex. Its analysis showed a ternary complex with both molecules strongly bound inside the enzyme catalytic cavity. The synergistic inhibition of hTS and its mechanistic rationale were consistent with the structural analysis. When administered in combination to A2780 and A2780/CP ovarian cancer cells, the two drugs inhibited ovarian cancer cell growth additively/synergistically. Together, these results support the idea that X-ray crystallography can provide structural indicators for designing combinations of hTS (or any other target)-directed drugs to accelerate preclinical research for therapeutic application.


2020 ◽  
Vol 10 (4) ◽  
pp. 594-602 ◽  
Author(s):  
Li Liu ◽  
Fuxing Hao ◽  
Anping Wang ◽  
Xiaolan Chen ◽  
Bin Zhang ◽  
...  

Recently, LSD1 is considered as a possible therapeutic mark for ovarian epithelial cancer (OEC). Though, the underlying molecular mechanism by which LSD1 endorses the oncogenesis of OEC has not been fully understood. Here, we revealed that overexpression of LSD1 downregulated Forkhead box O 3a (FOXO3a), while knockdown or pharmacological inhibition of LSD1 upregulated FOXO3a expression. Specifically, LSD1 interacted with demethylated FOXO3a. The LSD1-demethylated FOXO3a degraded via an ubiquitin-proteasome pathway. Biologically, LSD1 destabilized FOXO3a to abrogate its functions in the suppression of soft agar colony and cell proliferation formation in HO8910 ovarian cancer cells. Knockdown of FOXO3a rescued the restricted cell proliferation by LSD1 downregulation. As a whole, our study clarifies a way in ovarian cancer cell growth through the negative regulation of FOXO3a by LSD1.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Qin Zhang ◽  
Shuxiang Zhang

Ovarian cancer is one of the leading causes of death among gynecological malignancies. Increasing evidence indicate that dysregulation of microRNAs (miRNAs) plays an important role in tumor radioresistance. The aim of the present study is to investigate whether microRNA-214 (miR-214) was involved in radioresistance of human ovarian cancer. Here, we showed that miR-214 was significantly up-regulated in ovarian cancer tissues and radioresistance ovarian cancer cell lines. Transfection of miR-214 agomir in radiosensitive ovarian cancer cell lines promoted them for resistance to ionizing radiation, whereas transfection of miR-214 antagomir in radioresistance ovarian cancer cell lines sensitized them to ionizing radiation again. Furthermore, we found miR-214 effectively promoted tumor radioresistance in xenograft animal experiment. Western blotting and quantitative real-time PCR demonstrated that miR-214 negatively regulated PTEN in radioresistance ovarian cancer cell lines and ovarian cancer tissues. Taken together, our data conclude that miR-214 contributes to radioresistance of ovarian cancer by directly targeting PTEN.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Ling Chen ◽  
Shang Cai ◽  
Jing-mei Wang ◽  
Ying-ying Huai ◽  
Pei-Hua Lu ◽  
...  

AbstractBromodomain testis-specific factor (BRDT) is a member of the bromodomain and extra-terminal (BET) family proteins. Its expression and potential functions in ovarian cancer were examined. We show that BRDT is overexpressed in human ovarian cancer tissues and in established (CaOV3)/primary ovarian cancer cells. However, its expression is low in ovarian epithelial tissues and cells. Significantly, shRNA-induced silencing or CRISPR/Cas9-mediated knockout of BRDT inhibited ovarian cancer cell growth, viability, proliferation and migration, and induced significant apoptosis activation. Conversely, exogenous overexpression of BRDT, by a lentiviral construct, augmented CaOV3 cell proliferation and migration. In CaOV3 cells expression of two key BRDT target genes, polo-like kinase 1 (PLK1) and aurora kinase C (AURKC), was downregulated by BRDT shRNA or knockout, but upregulated with BRDT overexpression. In vivo, xenograft tumors-derived from BRDT-knockout CaOV3 cells grew significantly slower than control tumors in severe combined immunodeficient (SCID) mice. Furthermore, intratumoral injection of BRDT shRNA lentivirus potently inhibited the growth of primary ovarian cancer xenografts in SCID mice. Downregulation of PLK1 and AURKC was detected in BRDT-knockout and BRDT-silenced tumor tissues. Collectively, BRDT overexpression promotes ovarian cancer cell progression. Targeting BRDT could be a novel strategy to treat ovarian cancer.


2020 ◽  
Vol 168 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Hui Zhao ◽  
Aixia Wang ◽  
Zhiwei Zhang

Abstract Ovarian cancer has ranked as one of the leading causes of female morbidity and mortality around the world, which affects ∼239,000 patients and causes 152,000 deaths every year. Chemotherapeutic resistance of ovarian cancer remains a devastating actuality in clinic. The aberrant upregulation of long non-coding RNA succinate dehydrogenase complex flavoprotein subunit A pseudogene 1 (lncRNA SDHAP1) in the Paclitaxel (PTX)-resistant ovarian cancer cell lines has been reported. However, studies focussed on SDHAP1 in its regulatory function of chemotherapeutic resistance in ovarian cancer are limited, and the detailed mechanisms remain unclear. In this study, we demonstrated that SDHAP1 was upregulated in PTX-resistant SKOV3 and Hey-8 ovarian cancer cell lines while the level of miR-4465 was downregulated. Knocking-down SDHAP1 induced re-acquirement of chemo-sensitivity to PTX in ovarian cancer cells in vitro. Mechanically, SDHAP1 upregulated the expression of EIF4G2 by sponging miR-4465 and thus facilitated the PTX-induced apoptosis in ovarian cancer cells. The regulation network involving SDHAP1, miR-4465 and EIF4G2 could be a potential therapy target for the PTX-resistant ovarian cancer.


2013 ◽  
Vol 25 (1) ◽  
pp. 245
Author(s):  
N.-H. Kang ◽  
K.-C. Choi

Resveratrol (trans-3,4,5-trihydroxystilbene; RES) was adopted in this study as a novel phytoestrogen displaying antioxidant, antiinflammatory, and anticancer effects. In this study, we evaluated the inhibitory effect of RES on the cell growth induced by 17β-oestradiol (E2), a typical oestrogen, and bisphenol A (BPA), an endocrine-disrupting chemical (EDC) in BG-1 ovarian cancer cells expressing oestrogen receptors (ER) through down-regulating oestrogen receptor α (ERa) and insulin-like growth factor-1 receptor (IGF-1R). The EDC and oestrogen appear to promote the development of the oestrogen-dependent cancers. Thus, we need to develop therapeutic methods for EDC-dependent cancers. In in vitro experiments, we examined the cell viability and mRNA expression of ERa ± IGF-1R genes following the treatments with E2 or BPA in the presence or absence of RES or ICI 182 780, an ER antagonist, by MTT assay and RT-PCR, respectively. We also examined the protein level of ERa, phosphorylated insulin receptor substrate-1 (IRS-1), phosphorylated Akt1/2/3, p21, and cyclin D1 by Western blot analysis. Treatment with E2 or BPA remarkably increased the growth of BG-1 ovarian cancer cells, and their enhanced cell growth appeared to be mediated by ERa. In addition, the treatment of BG-1 ovarian cancer cells with E2 or BPA resulted in an increase in ERa and IGF-1R gene expressions. However, co-treatment of RES reversed E2- or BPA-induced ovarian cancer cell growth and mRNA expressions of ERa and IGF-1R. The protein levels of phosphorylated IRS-1 and Akt were upregulated by E2 or BPA, whereas these levels were downregulated by co-treatment of RES in the presence of E2 or BPA. Taken together, these results indicate that RES may effectively inhibit ovarian cancer cell growth via downregulating cross-talk between ERa and IGF-1R. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of Korea government (no. 2011-0015385).


2018 ◽  
Vol 3 (2) ◽  
pp. 340-357 ◽  
Author(s):  
Sakshi Gera ◽  
Sandeep Kumar S. ◽  
Shalini N Swamy ◽  
Rahul Bhagat ◽  
Annapurna Vadaparty ◽  
...  

Abstract The association between the upregulated Notch and FSH signaling and ovarian cancer is well documented. However, their signaling has been investigated independently and only in the primary tumor tissues. The aim of this study was to investigate the interactive effects of FSH and Notch signaling on ovarian cancer proliferation, formation, and maintenance of disseminated ovarian cancer cells. The roles of Notch and FSH in ovarian cancer pathogenesis were investigated with ovarian cancer cell lines and specific antibodies against Notch and FSH receptor (FSHR). FSH upregulated Notch signaling and proliferation in ovarian cancer cells. High levels of FSH were detected in the ascites of patients with serous ovarian adenocarcinoma. Spheroids from the patients’ ascites, as well as the spheroids from ovarian cancer cell lines under low attachment culture conditions, expressed FSHβ subunit mRNA and secreted the hormone into the medium. In contrast, primary ovarian tumor tissues and cell line monolayers expressed very low levels of FSHβ. Ovarian cancer cell spheroids also exhibited higher expression of FSH receptor and Notch downstream genes than their monolayer counterparts. A combination of FSHR and Notch antagonistic antibodies significantly inhibited spheroid formation and cell proliferation in vitro. This study demonstrates that spheroids in ascites express and secrete FSH, which regulates cancer cell proliferation and spheroidogenesis through Notch signaling, suggesting that FSH is an autocrine regulator of cancer metastasis. Furthermore, Notch and FSHR are potential immunotherapeutic targets for ovarian cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document