scholarly journals Effect of Elevated CO2 on Biomolecules’ Accumulation in Caraway (Carum carvi L.) Plants at Different Developmental Stages

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2434
Author(s):  
Hamada AbdElgawad ◽  
Mohammad K. Okla ◽  
Saud S. Al-amri ◽  
Abdulrahman AL-Hashimi ◽  
Wahida H. AL-Qahtani ◽  
...  

Caraway plants have been known as a rich source of phytochemicals, such as flavonoids, monoterpenoid glucosides and alkaloids. In this regard, the application of elevated CO2 (eCO2) as a bio-enhancer for increasing plant growth and phytochemical content has been the focus of many studies; however, the interaction between eCO2 and plants at different developmental stages has not been extensively explored. Thus, the present study aimed at investigating the changes in growth, photosynthesis and phytochemicals of caraway plants at two developmental stages (sprouts and mature tissues) under control and increased CO2 conditions (ambient CO2 (a CO2, 400 ± 27 μmol CO2 mol−1 air) and eCO2, 620 ± 42 μmol CO2 mol−1 air ppm). Moreover, we evaluated the impact of eCO2-induced changes in plant metabolites on the antioxidant and antibacterial activities of caraway sprouts and mature plants. CO2 enrichment increased photosynthesis and biomass accumulation of both caraway stages. Regarding their phytochemical contents, caraway plants interacted differently with eCO2, depending on their developmental stages. High levels of CO2 enhanced the production of total nutrients, i.e., carbohydrates, proteins, fats and crude fibers, as well as organic and amino acids, in an equal pattern in both caraway sprouts and mature plants. Interestingly, the eCO2-induced effect on minerals, vitamins and phenolics was more pronounced in caraway sprouts than the mature tissues. Furthermore, the antioxidant and antibacterial activities of caraway plants were enhanced under eCO2 treatment, particularly at the mature stage. Overall, eCO2 provoked changes in the phytochemical contents of caraway plants, particularly at the sprouting stage and, hence, improved their nutritive and health-promoting properties.

2003 ◽  
Vol 3 (3) ◽  
pp. 2691-2706 ◽  
Author(s):  
A. R. Mosier ◽  
P. Pendall ◽  
J. A. Morgan

Abstract. An open-top-chamber (OTC) CO2 enrichment study was conducted in the Colorado shortgrass steppe to determine the effect of elevated CO2 (~720 mmol mol−1) on plant production, photosynthesis, and water use of this mixed C3/C4 plant community, soil nitrogen (N) and carbon (C) cycling and the impact of changes induced by \\CO2 on trace gas exchange. Weekly measurements of CO2, CH4, NOx and N2O fluxes within control (unchambered), ambient CO2 and elevated CO2 OTCs and soil water and temperature were measured at each flux measurement time from early April 1997, year round, through October 2001. Even though both aboveground plant biomass increased under elevated CO2 and soil moisture content was typically higher than under ambient CO2 conditions, none of the trace gas fluxes were significantly altered by CO2 enrichment over the 55 month period of observation. During early summer of 2002, following the removal of the open-top-chambers from the CO2 enrichment sites in October, we conducted a short term study to determine if soil microbial processes were altered in soils that had been exposed to double ambient CO2 concentrations during the growing season for the past five years. Microplots were established within each experimental site and 10 mm of water or 10 mm of water containing the equivalent of 10 g m−2 of ammonium nitrate-N was applied to the soil surface. Fluxes of CO2, CH4, NOx and N2O fluxes within control (unchambered), ambient CO2 and elevated CO2 OTCs soils at one to three day intervals for the next month. With water addition alone, CO2 and NO emission did not differ between ambient and elevated CO2 soils, while CH4 uptake rates were higher and N2O fluxes lower in elevated CO2 soils. Adding water and mineral N resulted in increased CO2 emissions, increased CH4 uptake and decreased NO emissions in elevated CO2 soils. The N addition study confirmed previous observations that soil respiration is enhanced under elevated CO2 and N immobilization is increased, thereby decreasing NO emission.


2013 ◽  
Vol 40 (2) ◽  
pp. 160 ◽  
Author(s):  
Eduardo Dias de Oliveira ◽  
Helen Bramley ◽  
Kadambot H. M. Siddique ◽  
Samuel Henty ◽  
Jens Berger ◽  
...  

Wheat (Triticum aestivum L.) production may be affected by the future climate, but the impact of the combined increases in atmospheric CO2 concentration, temperature and incidence of drought that are predicted has not been evaluated. The combined effect of elevated CO2, high temperature and terminal drought on biomass accumulation and grain yield was evaluated in vigorous (38–19) and nonvigorous (Janz) wheat genotypes grown under elevated CO2 (700 µL L–1) combined with temperatures 2°C, 4°C and 6°C above the current ambient temperature. Terminal drought was induced in all combinations at anthesis in a split-plot design to test whether the effect of elevated CO2 combined with high temperature ameliorates the negative effects of terminal drought on biomass accumulation and grain yield. Biomass and grain yield were enhanced under elevated CO2 with 2°C above the ambient temperature, regardless of the watering regimen. The combinations of elevated CO2 plus 4°C or 6°C above the ambient temperature did not enhance biomass and grain yield, but tended to decrease them. The reductions in biomass and grain yield (45–50%) caused by terminal drought were less severe (21–28%) under elevated CO2 with 2°C above the ambient temperature. The amelioration resulted from a 63% increase in the rate of leaf net photosynthesis in 38–19 and a 39% increase in tillering and leaf area in Janz. The contrasting responses and phenological development of these two genotypes to the combination of elevated CO2, temperature and terminal drought, and the possible influences on their source–sink relationships are discussed.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1174
Author(s):  
Modhi O. Alotaibi ◽  
Galal Khamis ◽  
Hamada AbdElgawad ◽  
Afrah E. Mohammed ◽  
Mohamed S. Sheteiwy ◽  
...  

The nutritional and health-promoting properties of plants are largely determined by their tissue chemistry. Tuning growth conditions could affect the accumulation of phytochemicals and, therefore, enhance the biological activities. Herein, the impact of elevated CO2 (eCO2; 620 µmol CO2 mol−1 air) on growth and chemical composition of sprouts of three Lepidium sativum cultivars (Haraz, Khider and Rajab) was investigated. Changes in the sprout actions against some human chronic diseases were evaluated. eCO2 induced biomass accumulation (1.46-, 1.47- and 2-fold in Haraz, Khider and Rajab, respectively) and pigment accumulation and reduced the level of antinutrients in L. sativum cultivars. Compared to the control, eCO2 induced total glucosinolate accumulation (0.40-, 0.90- and 1.29-fold in Khider, Haraz and Rajab, respectively), possibly through increased amino acid production, and their hydrolysis by myrosinase. In line with increased polyphenol production, improved phenylalanine ammonia lyase activity was observed. The antioxidant, anti-inflammatory, hypocholesterolemic, antibacterial and anticancer activities of the produced sprouts were significantly improved by sprouting and eCO2 exposure. PCA indicated that the cultivars showed interspecific responses. Thus, the present study confirms the synergistic effect of sprouting with eCO2 exposure as a promising approach to produce more bioactive L. sativum sprouts.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 139 ◽  
Author(s):  
Xun Li ◽  
Jinlong Dong ◽  
Nazim S. Gruda ◽  
Wenying Chu ◽  
Zengqiang Duan

The concentration changes of mineral elements in plants at different CO2 concentrations ([CO2]) and nitrogen (N) supplies and the mechanisms which control such changes are not clear. Hydroponic trials on cucumber plants with three [CO2] (400, 625, and 1200 μmol mol−1) and five N supply levels (2, 4, 7, 14, and 21 mmol L−1) were conducted. When plants were in high N supply, the increase in total biomass by elevated [CO2] was 51.7% and 70.1% at the seedling and initial fruiting stages, respectively. An increase in net photosynthetic rate (Pn) by more than 60%, a decrease in stomatal conductance (Gs) by 21.2–27.7%, and a decrease in transpiration rate (Tr) by 22.9–31.9% under elevated [CO2] were also observed. High N supplies could further improve the Pn and offset the decrease of Gs and Tr by elevated [CO2]. According to the mineral concentrations and the correlation results, we concluded the main factors affecting these changes. The dilution effect was the main factor driving the reduction of all mineral elements, whereas Tr also had a great impact on the decrease of [N], [K], [Ca], and [Mg] except [P]. In addition, the demand changes of N, Ca, and Mg influenced the corresponding element concentrations in cucumber plants.


2021 ◽  
Vol 22 (4) ◽  
pp. 419-428
Author(s):  
MUNISH KAUNDAL ◽  
RAKESH KUMAR

Valeriana jatamansi is an important medicinal and aromatic plant used as sedative in modern  and traditional medicines butthere is dearth of literature regarding how elevated CO2 and temperature affect on this plant. Therefore,an experiment was conducted to study the effect of elevated CO2 (550±50 µmol mol-1) and elevated temperature (2.5±0.5°C above ambient) and vermicompost on growth, phenology and biomass accumulation in V. jatamansi under Free Air CO2 Enrichment (FACE) and Free Air TemperatureIncrement (FATI) facilities at Palampur, India, during 2013-2015. Growth parameters and biomass accumulation into different parts were observed at 4, 12 and 16 months after exposure (MAE). Plant height, total dry biomass and leaf area plant -1 increased in elevated CO2 treatment applied with vermicompost as compared to the other treatments. Elevated CO2 significantly enhanced leaf area (3.5-23.5%), leaf biomass (12.7-33.2%), stem (15.3-15.6%), root (3.2-72.5%), rhizome (2.1-42.2%) and total biomass (7.7-52.7%), whereas elevated temperature increased aboveground biomass (15.0-45.3%), belowground biomass (11.6-55.5%) and total biomass (12.4-7.9%), respectively, as compared to ambient. Phenological stages were advanced by 1.2-3.9 days under FACE and FATI as compared to ambient. The results indicate that aboveground, belowground and total biomass increased under elevated CO2 and elevated temperature as compared to ambient. 


Author(s):  
Michael Raiber

The impact of teacher dispositions on the professional development of preservice music teachers (PMTs) has been substantiated. This chapter describes an approach to dispositional development within the structure of an introduction to music education course. A teacher concerns model is used to organize this systematic approach through three developmental stages that include self-concerns, teaching task concerns, and student learning concerns. A series of 11 critical questions are presented for use in guiding PMTs’ dispositional development through these developmental stages. Activities to engage PMTs in the exploration of each of these questions are detailed for use by music teacher educators desiring to engage PMTs in dispositional development.


2021 ◽  
Vol 43 (4) ◽  
Author(s):  
Agnieszka Ostrowska ◽  
Maciej T. Grzesiak ◽  
Tomasz Hura

AbstractSoil drought is a major problem in plant cultivation. This is particularly true for thermophilic plants, such as maize, which grow in areas often affected by precipitation shortage. The problem may be alleviated using plant growth and development stimulators. Therefore, the aim of the study was to analyze the effects of 5-aminolevulinic acid (5-ALA), zearalenone (ZEN), triacontanol (TRIA) and silicon (Si) on water management and photosynthetic activity of maize under soil drought. The experiments covered three developmental stages: three leaves, stem elongation and heading. The impact of these substances applied during drought stress depended on the plant development stage. 5-ALA affected chlorophyll levels, gas exchange and photochemical activity of PSII. Similar effects were observed for ZEN, which additionally induced stem elongation and limited dehydration. Beneficial effects of TRIA were visible at the stage of three leaves and involved leaf hydration and plant growth. A silicon preparation applied at the same developmental stage triggered similar effects and additionally induced changes in chlorophyll levels. All the stimulators significantly affected transpiration intensity at the heading stage.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Javed Alam ◽  
Arun Kumar Shukla ◽  
Mohammad Azam Ansari ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Mansour Alhoshan

We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (BR) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The BR values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.


1999 ◽  
Vol 26 (8) ◽  
pp. 737 ◽  
Author(s):  
Marcus Schortemeyer ◽  
Owen K. Atkin ◽  
Nola McFarlane ◽  
John R. Evans

The interactive effects of nitrate supply and atmospheric CO2 concentration on growth, N2 fixation, dry matter and nitrogen partitioning in the leguminous tree Acacia melanoxylon R.Br. were studied. Seedlings were grown hydroponically in controlled-environment cabinets for 5 weeks at seven 15N-labelled nitrate levels, ranging from 3 to 6400 mmol m–3. Plants were exposed to ambient (~350 µmol mol–1) or elevated (~700 µmol mol–1) atmospheric CO2 for 6 weeks. Total plant dry mass increased strongly with nitrate supply. The proportion of nitrogen derived from air decreased with increasing nitrate supply. Plants grown under either ambient or elevated CO2 fixed the same amount of nitrogen per unit nodule dry mass (16.6 mmol N per g nodule dry mass) regardless of the nitrogen treatment. CO2 concentration had no effect on the relative contribution of N2 fixation to the nitrogen yield of plants. Plants grown with ≥50 mmol m–3 N and elevated CO2 had approximately twice the dry mass of those grown with ambient CO2 after 42 days. The rates of net CO2 assimilation under growth conditions were higher per unit leaf area for plants grown under elevated CO2. Elevated CO2 also decreased specific foliage area, due to an increase in foliage thickness and density. Dry matter partitioning between plant organs was affected by ontogeny and nitrogen status of the plants, but not by CO2 concentration. In contrast, plants grown under elevated CO2 partitioned more of their nitrogen to roots. This could be attributed to reduced nitrogen concentrations in foliage grown under elevated CO2.


Sign in / Sign up

Export Citation Format

Share Document