scholarly journals Characterization of a Chickpea Mutant Resistant to Phelipanche aegyptiaca Pers. and Orobanche crenata Forsk

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2552
Author(s):  
Shmuel Galili ◽  
Joseph Hershenhorn ◽  
Evgeny Smirnov ◽  
Koichi Yoneyama ◽  
Xiaonan Xie ◽  
...  

Chickpea (Cicer arietinum L.) is a major pulse crop in Israel grown on about 3000 ha spread, from the Upper Galilee in the north to the North-Negev desert in the south. In the last few years, there has been a gradual increase in broomrape infestation in chickpea fields in all regions of Israel. Resistant chickpea cultivars would be simple and effective solution to control broomrape. Thus, to develop resistant cultivars we screened an ethyl methanesulfonate (EMS) mutant population of F01 variety (Kabuli type) for broomrape resistance. One of the mutant lines (CCD7M14) was found to be highly resistant to both Phelipanche aegyptiaca and Orobanche crenata. The resistance mechanism is based on the inability of the mutant to produce strigolactones (SLs)—stimulants of broomrape seed germination. LC/MS/MS analysis revealed the SLs orobanchol, orobanchyl acetate, and didehydroorobanchol in root exudates of the wild type, but no SLs could be detected in the root exudates of CCD7M14. Sequence analyses revealed a point mutation (G-to-A transition at nucleotide position 210) in the Carotenoid Cleavage Dioxygenase 7 (CCD7) gene that is responsible for the production of key enzymes in the biosynthesis of SLs. This nonsense mutation resulted in a CCD7 stop codon at position 70 of the protein. The influences of the CCD7M14 mutation on chickpea phenotype and chlorophyll, carotenoid, and anthocyanin content were characterized.

2016 ◽  
Vol 29 (10) ◽  
pp. 743-749 ◽  
Author(s):  
Stefano Pavan ◽  
Adalgisa Schiavulli ◽  
Angelo Raffaele Marcotrigiano ◽  
Nicoletta Bardaro ◽  
Valentina Bracuto ◽  
...  

Crenate broomrape (Orobanche crenata Forsk.) is a devastating parasitic weed threatening the cultivation of legumes around the Mediterranean and in the Middle East. So far, only moderate levels of resistance were reported to occur in pea (Pisum sativum L.) natural germplasm, and most commercial cultivars are prone to severe infestation. Here, we describe the selection of a pea line highly resistant to O. crenata, following the screening of local genetic resources. Time series observations show that delayed emergence of the parasite is an important parameter associated with broomrape resistance. High performance liquid chromatography connected to tandem mass spectrometry analysis and in vitro broomrape germination bioassays suggest that the resistance mechanism might involve the reduced secretion of strigolactones, plant hormones exuded by roots and acting as signaling molecules for the germination of parasitic weeds. Two years of replicated trials in noninfested fields indicate that the resistance is devoid of pleiotropic effects on yield, in contrast to pea experimental mutants impaired in strigolactone biosynthesis and, thus, is suitable for use in breeding programs.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Nguyen Van Giap ◽  
Chung Hee Chun ◽  
Huynh Thi My Le ◽  
Cao Thi Bich Phuong ◽  
Vu Thi Ngoc ◽  
...  

2013 ◽  
Vol 48 (3) ◽  
pp. 295-302
Author(s):  
Lei Zhenzhen ◽  
Ye Jinglong ◽  
Cheng Haili ◽  
Chen Yun ◽  
Wang Huixing ◽  
...  

Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Conghui Xie ◽  
Yunle Chen ◽  
...  

Organic aerosol (OA), a large fraction of fine particles, has a large impact on climate radiative forcing and human health, and the impact depends strongly on size distributions. Here we...


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
Na Huang ◽  
...  

Abstract Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


2015 ◽  
Vol 290 (4) ◽  
pp. 1589-1603 ◽  
Author(s):  
Xiongjie Zheng ◽  
Zongzhou Xie ◽  
Kaijie Zhu ◽  
Qiang Xu ◽  
Xiuxin Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document