scholarly journals Role of Nanoparticle–Polymer Interactions on the Development of Double-Network Hydrogel Nanocomposites with High Mechanical Strength

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 470 ◽  
Author(s):  
Andrew Chang ◽  
Nasim Babhadiashar ◽  
Emma Barrett-Catton ◽  
Prashanth Asuri

Extensive experimental and theoretical research over the past several decades has pursued strategies to develop hydrogels with high mechanical strength. Our study investigated the effect of combining two approaches, addition of nanoparticles and crosslinking two different polymers (to create double-network hydrogels), on the mechanical properties of hydrogels. Our experimental analyses revealed that these orthogonal approaches may be combined to synthesize hydrogel composites with enhanced mechanical properties. However, the enhancement in double network hydrogel elastic modulus due to incorporation of nanoparticles is limited by the ability of the nanoparticles to strongly interact with the polymers in the network. Moreover, double-network hydrogel nanocomposites prepared using lower monomer concentrations showed higher enhancements in elastic moduli compared to those prepared using high monomer concentrations, thus indicating that the concentration of hydrogel monomers used for the preparation of the nanocomposites had a significant effect on the extent of nanoparticle-mediated enhancements. Collectively, these results demonstrate that the hypotheses previously developed to understand the role of nanoparticles on the mechanical properties of hydrogel nanocomposites may be extended to double-network hydrogel systems and guide the development of next-generation hydrogels with extraordinary mechanical properties through a combination of different approaches.

Author(s):  
Andrew Chang ◽  
Nasim Babhadiashar ◽  
Emma Barrett-Catton ◽  
Prashanth Asuri

Extensive experimental and theoretical research over the past several decades has culminated in the understanding of the mechanisms behind nanoparticle-mediated enhancements on the mechanical properties of hydrogels. This information is not only crucial to realizing applications that directly benefit from developing hydrogels with high mechanical strength, but also to guide the development of strategies to further enhance hydrogel properties by combining different approaches. In our study, we investigated the effect of combining two approaches – addition of nanoparticles and crosslinking two different polymers (to create double-network hydrogels) – on the mechanical properties of hydrogels. Our studies revealed that these approaches may be combined to synthesize hydrogel composites with enhanced properties; however, both polymers in the double-network hydrogel must strongly interact with the nanoparticles to fully benefit from the addition of nanoparticles. Moreover, the concentration of hydrogel monomers used for the preparation of the double-network hydrogels had a significant effect on the extent of nanoparticle-mediated enhancements; double-network hydrogel nanocomposites prepared using lower monomer concentrations showed higher enhancements in elastic moduli compared to those prepared using high monomer concentrations. Collectively, these results demonstrate that the hypotheses previously developed to understand the role of nanoparticles on the mechanical properties of hydrogel nanocomposites may be extended to double-network hydrogel systems and guide the development of next generation hydrogels with extraordinary mechanical properties through a combination of orthogonal approaches.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 882 ◽  
Author(s):  
Josergio Zaragoza ◽  
Scott Fukuoka ◽  
Marcus Kraus ◽  
James Thomin ◽  
Prashanth Asuri

Over the past few decades, research studies have established that the mechanical properties of hydrogels can be largely impacted by the addition of nanoparticles. However, the exact mechanisms behind such enhancements are not yet fully understood. To further explore the role of nanoparticles on the enhanced mechanical properties of hydrogel nanocomposites, we used chemically crosslinked polyacrylamide hydrogels incorporating silica nanoparticles as the model system. Rheological measurements indicate that nanoparticle-mediated increases in hydrogel elastic modulus can exceed the maximum modulus that can be obtained through purely chemical crosslinking. Moreover, the data reveal that nanoparticle, monomer, and chemical crosslinker concentrations can all play an important role on the nanoparticle mediated-enhancements in mechanical properties. These results also demonstrate a strong role for pseudo crosslinking facilitated by polymer–particle interactions on the observed enhancements in elastic moduli. Taken together, our work delves into the role of nanoparticles on enhancing hydrogel properties, which is vital to the development of hydrogel nanocomposites with a wide range of specific mechanical properties.


2015 ◽  
Vol 3 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Zhiyong Li ◽  
Yunlan Su ◽  
Baoquan Xie ◽  
Xianggui Liu ◽  
Xia Gao ◽  
...  

A novel physically linked double-network (DN) hydrogel was prepared by natural polymer KGM and synthetic polymer PAAm. The DN hydrogels exhibit good mechanical properties, cell adhesion properties, and can be freely shaped, making such hydrogels promising for tissue engineering scaffolds.


2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


1990 ◽  
Vol 215 ◽  
Author(s):  
K. Nishii ◽  
M. Usui ◽  
T. Muraya ◽  
K. Kimura

Polymer blend technology is attractive from the standpoint of both science and industry, and many combinations have been studied. Recently, the polymer blends, including liquid crystalline polymer, have been especially worthy of notice, [1,2,3]. In order to obtain materials with a high mechanical strength and moldability for use in thin molded items, we chose polyamide (PA)-liquid crystalline polymer (LCP) blends. In this study, we first measured the mechanical properties, then studied the features of the polymer structure. We also examined the relationship between morphology and mechanical properties. As a result, we found that the mechanical properties of the blends depended largely on blend morphology, and that mechanical strength increased as blend compatibility increased. On the other hand, we also found that the blends showed compatible and microheterogeneous dispersion at less than 25 wt% LCP, while at more than 30 wt% LCP, blends tended to show twophase separation.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5157
Author(s):  
Erfan Rezvani Ghomi ◽  
Fatemeh Khosravi ◽  
Zahra Mossayebi ◽  
Ali Saedi Ardahaei ◽  
Fatemeh Morshedi Dehaghi ◽  
...  

Polyethylene (PE) is one the most used plastics worldwide for a wide range of applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good functionality. However, its high flammability and rapid flame spread pose dangers for certain applications. Therefore, different flame-retardant (FR) additives are incorporated into PE to increase its flame retardancy. In this review article, research papers from the past 10 years on the flame retardancy of PE systems are comprehensively reviewed and classified based on the additive sources. The FR additives are classified in well-known FR families, including phosphorous, melamine, nitrogen, inorganic hydroxides, boron, and silicon. The mechanism of fire retardance in each family is pinpointed. In addition to the efficiency of each FR in increasing the flame retardancy, its impact on the mechanical properties of the PE system is also discussed. Most of the FRs can decrease the heat release rate (HRR) of the PE products and simultaneously maintains the mechanical properties in appropriate ratios. Based on the literature, inorganic hydroxide seems to be used more in PE systems compared to other families. Finally, the role of nanotechnology for more efficient FR-PE systems is discussed and recommendations are given on implementing strategies that could help incorporate flame retardancy in the circular economy model.


2003 ◽  
Vol 15 (14) ◽  
pp. 1155-1158 ◽  
Author(s):  
J.P. Gong ◽  
Y. Katsuyama ◽  
T. Kurokawa ◽  
Y. Osada

Author(s):  
Kaili Zhang ◽  
Ren'ai Li ◽  
Guangxue Chen ◽  
Yang Jimin ◽  
Junfei Tian ◽  
...  

Conductive elastomers (CEs)with strong mechanical properties have been fabricated and used in flexible electronics. However, the development of CEs with both super-high mechanical strength and extreme stretchability remains challenging. This...


2004 ◽  
Vol 37 (14) ◽  
pp. 5370-5374 ◽  
Author(s):  
Yang-Ho Na ◽  
Takayuki Kurokawa ◽  
Yoshinori Katsuyama ◽  
Hiroyuki Tsukeshiba ◽  
Jian Ping Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document