scholarly journals Micromechanical Punching: A Versatile Method for Non-Spherical Microparticle Fabrication

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Ritika Singh Petersen ◽  
Anja Boisen ◽  
Stephan Sylvest Keller

Microparticles are ubiquitous in applications ranging from electronics and drug delivery to cosmetics and food. Conventionally, non-spherical microparticles in various materials with specific shapes, sizes, and physicochemical properties have been fabricated using cleanroom-free lithography techniques such as soft lithography and its high-resolution version particle replication in non-wetting template (PRINT). These methods process the particle material in its liquid/semi-liquid state by deformable molds, limiting the materials from which the particles and the molds can be fabricated. In this study, the microparticle material is exploited as a sheet placed on a deformable substrate, punched by a robust mold. Drawing inspiration from the macro-manufacturing technique of punching metallic sheets, Micromechanical Punching (MMP) is a high-throughput technique for fabrication of non-spherical microparticles. MMP allows production of microparticles from prepatterned, porous, and fibrous films, constituting thermoplastics and thermosetting polymers. As an illustration of application of MMP in drug delivery, flat, microdisk-shaped Furosemide embedded poly(lactic-co-glycolic acid) microparticles are fabricated and Furosemide release is observed. Thus, it is shown in the paper that Micromechanical punching has potential to make micro/nanofabrication more accessible to the research and industrial communities active in applications that require engineered particles.

Author(s):  
Rohit Karnik ◽  
Frank X. Gu ◽  
Suman Bose ◽  
Pamela Basto ◽  
Christopher Cannizzaro ◽  
...  

A central challenge in the development of drug-encapsulated polymeric nanoparticles is the inability to control the nanoparticle physicochemical properties that affect their biodistribution, drug release, and efficacy. Nanoparticles may be developed by mixing and nanoprecipitation of polymers and drugs dissolved in organic solvents with non-solvents. Inadequate control over this mixing process is a source of variability in the synthesis of these nanoparticles by nanoprecipitation. We demonstrate that rapid and tunable mixing through hydrodynamic flow focusing in a microfluidic device can be used to control nanoprecipitation of poly(lactic-co-glycolic acid)-bpoly(ethylene glycol) (PLGA-PEG) diblock copolymers as a model polymeric biomaterial for drug delivery.


Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Thai Thanh Hoang Thi ◽  
Estelle J. A. Suys ◽  
Jung Seok Lee ◽  
Dai Hai Nguyen ◽  
Ki Dong Park ◽  
...  

COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.


2004 ◽  
Vol 116 (43) ◽  
pp. 5920-5923 ◽  
Author(s):  
Jason P. Rolland ◽  
Erik C. Hagberg ◽  
Ginger M. Denison ◽  
Kenneth R. Carter ◽  
Joseph M. De Simone

Sign in / Sign up

Export Citation Format

Share Document