scholarly journals Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 278
Author(s):  
Shiou Xuan Tan ◽  
Hwai Chyuan Ong ◽  
Andri Andriyana ◽  
Steven Lim ◽  
Yean Ling Pang ◽  
...  

Bioplastic has been perceived as a promising candidate to replace petroleum-based plastics due to its environment-friendly and biodegradable characteristics. This study presents the chitosan-reinforced, starch-based bioplastic film prepared by the solution casting and evaporation method. The effects of processing parameters, i.e., starch concentration, glycerol loading, process temperature and chitosan loading on mechanical properties were examined. Optimum tensile strength of 5.19 MPa and elongation at break of 44.6% were obtained under the combined reaction conditions of 5 wt.% starch concentration, 40 wt.% glycerol loading, 20 wt.% chitosan loading and at a process temperature of 70 °C. From the artificial neural network (ANN) modeling, the coefficient of determination (R2) for tensile strength and elongation at break were found to be 0.9955 and 0.9859, respectively, which proved the model had good fit with the experimental data. Interaction and miscibility between starch and chitosan were proven through the peaks shifting to a lower wavenumber in FTIR and a reduction of crystallinity in XRD. TGA results suggested the chitosan-reinforced starch-based bioplastic possessed reasonable thermal stability under 290 °C. Enhancement in water resistance of chitosan-incorporated starch-based bioplastic film was evidenced with a water uptake of 251% as compared to a 302% registered by the pure starch-based bioplastic film. In addition, the fact that the chitosan-reinforced starch-based bioplastic film degraded to 52.1% of its initial weight after 28 days suggests it is a more sustainable alternative than the petroleum-based plastics.

2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1616
Author(s):  
Vincenzo Titone ◽  
Antonio Correnti ◽  
Francesco Paolo La Mantia

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing—causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


2004 ◽  
Vol 77 (2) ◽  
pp. 380-390
Author(s):  
Wonmun Choi ◽  
Tomoyuki Matsumura

Abstract The reactions of dichloroalkanes and sodium tetra-sulfide (Na2S4) were carried out in a mixture of water and toluene to produce corresponding cyclic polysulfides and polysulfide polymer. The low molecular weights of cyclic sulfides were obtained by the reaction at 90 °C, while the high molecular weight of polysulfide polymer was obtained by the reaction at 50 °C. GPC chromatograms and Mass spectra revealed that the structures of cyclic polysulfide were 1:1, 2:2, and 3:3 adducts of dichloroalkane and sodium tetra-sulfide. The mechanical properties of vulcanized NR at 148 °C with cyclic sulfides were similar to that with sulfur. However, both tensile strength and elongation at break of vulcanized NR at 170 °C with cyclic sulfides are much higher than that with sulfur. The aging properties of vulcanized NR at 148 °C or 170 °C with cyclic polysulfides indicate better stability.


2016 ◽  
Vol 36 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Khalid Nawaz ◽  
Muhammad Ayub ◽  
Noaman Ul-Haq ◽  
M.B. Khan ◽  
Muhammad Bilal Khan Niazi ◽  
...  

Abstract Large area graphene oxide sheets were synthesized, dispersed in water and used as nanofiller for mechanical improvement in terms of Young’s modulus and ultimate tensile strength (UTS) of polyvinyl alcohol (PVA) at low loading. The molecular level dispersion and interfacial interactions between the graphene oxides and polymeric matrix PVA were the real challenges. An excellent improvement in mechanical properties at 0.35 wt% loading was observed. Modulus improved from 1.58 GPa to 2.72 GPa (~71% improvement), UTS improved from 120 MPa to 197 MPa (~65% improvement), and in spite of these improvements, interestingly, there was no fall in elongation at break at this loading.


2012 ◽  
Vol 32 (6-7) ◽  
pp. 435-444 ◽  
Author(s):  
Hsin-Tzu Liao ◽  
Chin-San Wu

Abstract Melt blending of polylactide (PLA), poly(ε-caprolactone) (PCL), and wood flour (WF) was performed in an effort to overcome the major drawbacks (brittleness and high price) of PLA. In addition, the acrylic acid (AA)-grafted PLA70PCL30 (PLA70PCL30-g-AA) was used as the alternative for the preparation of ternary blends to improve the compatibility and the dispersability of WF within the PLA70PCL30 matrix. As expected, PCL improved the elongation at break and the toughness of PLA but decreased the tensile strength and modulus. Because the hydrophilic WF is dispersed physically in the hydrophobic PLA70PCL30 matrix, as the result of Fourier transform infrared analysis, the mechanical properties of PLA70PCL30 became noticeably worse when it was blended with WF. This problem was successfully conquered by using PLA70PCL30-g-AA to replace PLA70PCL30 due to the formation of an ester carbonyl group between PLA70PCL30-g-AA and WF. Furthermore, the PLA70PCL30-g-AA/WF blend provided a plateau tensile strength at break when the WF content was up to 50 wt%. PLA70PCL30/WF exhibited a tensile strength at break of approximately 3–25 MPa more than PLA70PCL30-g-AA/WF. By using p-cresol and tyrosinase, the enzymatic biodegradable test showed that PLA70PCL30-g-AA is somewhat more biodegradable than PLA70PCL30 because the former has better water absorption. After 16 weeks, the weight loss of the PLA70PCL30/WF (50 wt%) composite was >80%. PLA70PCL30-g-AA/WF exhibited a weight loss of approximately 1–12 wt% more than PLA70PCL30-g-AA/WF. It was also found that the addition of WF to PLA70PCL30 or PLA70PCL30-g-AA decreased the crystallinity of PLA and PCL in PLA70PCL30 or PLA70PCL30-g-AA and then increased their biodegradable property.


2014 ◽  
Vol 6 (1) ◽  
pp. 39-44
Author(s):  
Gabriella Rétháti ◽  
Krisztina Pogácsás ◽  
Tamás Heffner ◽  
Barbara Simon ◽  
Imre Czinkota ◽  
...  

Abstract We have monitored the behaviour of different polyethylene foils including virgin medium density polyethylene (MDPE), MDPE containing pro-oxydative additives (238, 242) and MDPE with pro-oxydative additives and thermoplastic starch (297) in the soil for a period of one year. A foil based on a blend of polyester and polylactic acid (BASF Ecovio) served as degradable control. The experiment was carried out by weekly measurements of conductivity and capacity of the soil, since the setup was analogous to a condenser, of which the insulating layer was the foil itself. The twelve replications allowed monthly sampling; the specimen taken out from the soil each month were tested visually for thickness, mechanical properties, morphological and structural changes, and molecular mass. Based on the obtained capacity values, we found that among the polyethylene foils, the one that contained thermoplastic starch extenuated the most. This foil had the greatest decrease in tensile strength and elongation at break due to the presence of thermoplastic starch. The starch can completely degrade in the soil; thus, the foil had cracks and pores. The polyethylene foils that contained pro-oxydant additives showed smaller external change compared to the virgin foil, since there was no available UV radiation and oxygen for their degradation. The smallest change occurred in the virgin polyethylene foil. Among the five examined samples, the commercially available BASF foil showed the largest extenuation and external change, and it deteriorated the most in the soil.


2019 ◽  
Vol 27 (4(136)) ◽  
pp. 88-93
Author(s):  
K.Z.M. Abdul Motaleb ◽  
Md Shariful Islam ◽  
Rimvydas Milašius

Two types of composites:(1) pineapple fabric reinforced polyester resin (Pineapple/PR) and (2) jute fabric reinforced polyester resin (Jute/PR) were prepared and the mechanical properties investigated for various gamma radiation doses ranging from 100-500 krad. Properties like tensile strength, Young’s modulus, elongation-at-break, bending strength, bending modulus and impact strength were increased significantly by 19%, 32%, 45%, 32%, 47% and 20%, respectively, at a dose of 300 krad for Pineapple/PR, and by 47%, 49%, 42%, 45%, 52% and 65%, respectively, at a dose of 200 krad for the Jute/PR composite in comparison to the non-irradiated composite. Gamma radiation improved the mechanical properties, but overdoses of radiation even caused a reduction in them.


Sign in / Sign up

Export Citation Format

Share Document