scholarly journals Assessment of the SM12, SM8, and SMD Solvation Models for Predicting Limiting Activity Coefficients at 298.15 K

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 623 ◽  
Author(s):  
Sydnee N. Roese ◽  
Justin D. Heintz ◽  
Cole B. Uzat ◽  
Alexa J. Schmidt ◽  
Griffin V. Margulis ◽  
...  

The SMx (x = 12, 8, or D) universal solvent models are implicit solvent models which using electronic structure calculations can compute solvation free energies at 298.15 K. While solvation free energy is an important thermophysical property, within the thermodynamic modeling of phase equilibrium, limiting (or infinite dilution) activity coefficients are preferred since they may be used to parameterize excess Gibbs free energy models to model phase equilibrium. Conveniently, the two quantities are related. Therefore the present study was performed to assess the ability to use the SMx universal solvent models to predict limiting activity coefficients. Two methods of calculating the limiting activity coefficient where compared: (1) the solvation free energy and self-solvation free energy were both predicted and (2) the self-solvation free energy was computed using readily available vapor pressure data. Overall the first method is preferred as it results in a cancellation of errors, specifically for the case in which water is a solute. The SM12 model was compared to both the Universal Quasichemical Functional-group Activity Coefficients (UNIFAC) and modified separation of cohesive energy density (MOSCED) models. MOSCED was the highest performer, yet had the smallest available compound inventory. UNIFAC and SM12 exhibited comparable performance. Therefore further exploration and research should be conducted into the viability of using the SMx models for phase equilibrium calculations.

2020 ◽  
Author(s):  
Sydnee N. Roese ◽  
Justin D. Heintz ◽  
Cole B. Uzat ◽  
Alexa J. Schmidt ◽  
Griffin Margulis ◽  
...  

The SM<i>x</i> (<i>x</i>= 12, 8, or D) universal solvent models are implicit solvent models which using electronic structure calculations can compute solvation free energies at 298.15 K. While solvation free energy is an important thermophysical property, within the thermodynamic modeling of phase equilibrium, limiting (or infinite dilution) activity coefficients are preferred since they may be used to parameterize excess Gibbs free energy models to model phase equilibrium. Conveniently, the two quantities are related. Therefore the present study was performed to assess the ability to use the SM<i>x</i> universal solvent models to predict limiting activity coefficients. Two methods of calculating the limiting activity coefficient where compared: 1) The solvation free energy and self-solvation free energy were both predicted and 2) the self-solvation free energy was computed using readily available vapor pressure data. Overall the first method is preferred as it results in a cancellation of errors, specifically for the case in which water is a solute. The SM12 model was compared to both UNIFAC and MOSCED. MOSCED was the highest performer, yet had the smallest available compound inventory. UNIFAC and SM12 exhibited comparable performance. Therefore further exploration and research should be conducted into the viability of using the SM<i>x</i> models for phase equilibrium calculations.


2020 ◽  
Author(s):  
Sydnee N. Roese ◽  
Justin D. Heintz ◽  
Cole B. Uzat ◽  
Alexa J. Schmidt ◽  
Griffin Margulis ◽  
...  

The SM<i>x</i> (<i>x</i>= 12, 8, or D) universal solvent models are implicit solvent models which using electronic structure calculations can compute solvation free energies at 298.15 K. While solvation free energy is an important thermophysical property, within the thermodynamic modeling of phase equilibrium, limiting (or infinite dilution) activity coefficients are preferred since they may be used to parameterize excess Gibbs free energy models to model phase equilibrium. Conveniently, the two quantities are related. Therefore the present study was performed to assess the ability to use the SM<i>x</i> universal solvent models to predict limiting activity coefficients. Two methods of calculating the limiting activity coefficient where compared: 1) The solvation free energy and self-solvation free energy were both predicted and 2) the self-solvation free energy was computed using readily available vapor pressure data. Overall the first method is preferred as it results in a cancellation of errors, specifically for the case in which water is a solute. The SM12 model was compared to both UNIFAC and MOSCED. MOSCED was the highest performer, yet had the smallest available compound inventory. UNIFAC and SM12 exhibited comparable performance. Therefore further exploration and research should be conducted into the viability of using the SM<i>x</i> models for phase equilibrium calculations.


2020 ◽  
Author(s):  
Sydnee N. Roese ◽  
Justin D. Heintz ◽  
Cole B. Uzat ◽  
Alexa J. Schmidt ◽  
Griffin Margulis ◽  
...  

The SM<i>x</i> (<i>x</i>= 12, 8, or D) universal solvent models are implicit solvent models which using electronic structure calculations can compute solvation free energies at 298.15 K. While solvation free energy is an important thermophysical property, within the thermodynamic modeling of phase equilibrium, limiting (or infinite dilution) activity coefficients are preferred since they may be used to parameterize excess Gibbs free energy models to model phase equilibrium. Conveniently, the two quantities are related. Therefore the present study was performed to assess the ability to use the SM<i>x</i> universal solvent models to predict limiting activity coefficients. Two methods of calculating the limiting activity coefficient where compared: 1) The solvation free energy and self-solvation free energy were both predicted and 2) the self-solvation free energy was computed using readily available vapor pressure data. Overall the first method is preferred as it results in a cancellation of errors, specifically for the case in which water is a solute. The SM12 model was compared to both UNIFAC and MOSCED. MOSCED was the highest performer, yet had the smallest available compound inventory. UNIFAC and SM12 exhibited comparable performance. Therefore further exploration and research should be conducted into the viability of using the SM<i>x</i> models for phase equilibrium calculations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amin Alibakhshi ◽  
Bernd Hartke

AbstractTheoretical estimation of solvation free energy by continuum solvation models, as a standard approach in computational chemistry, is extensively applied by a broad range of scientific disciplines. Nevertheless, the current widely accepted solvation models are either inaccurate in reproducing experimentally determined solvation free energies or require a number of macroscopic observables which are not always readily available. In the present study, we develop and introduce the Machine-Learning Polarizable Continuum solvation Model (ML-PCM) for a substantial improvement of the predictability of solvation free energy. The performance and reliability of the developed models are validated through a rigorous and demanding validation procedure. The ML-PCM models developed in the present study improve the accuracy of widely accepted continuum solvation models by almost one order of magnitude with almost no additional computational costs. A freely available software is developed and provided for a straightforward implementation of the new approach.


2018 ◽  
Vol 114 (3) ◽  
pp. 344a-345a
Author(s):  
Clarisse Gravina Ricci ◽  
Bo Li ◽  
Li-Tien Cheng ◽  
Joachim Dzubiella ◽  
J. Andrew McCammon

2017 ◽  
Vol 19 (2) ◽  
pp. 1677-1685 ◽  
Author(s):  
Martin Brieg ◽  
Julia Setzler ◽  
Steffen Albert ◽  
Wolfgang Wenzel

Hydration free energy estimation of small molecules from all-atom simulations was widely investigated in recent years, as it provides an essential test of molecular force fields and our understanding of solvation effects.


2019 ◽  
Vol 18 (03) ◽  
pp. 1950015
Author(s):  
Zhaoxi Sun ◽  
Xiaohui Wang

Helix formation is of great significance in protein folding. The helix-forming tendencies of amino acids are accumulated along the sequence to determine the helix-forming tendency of peptides. Computer simulation can be used to model this process in atomic details and give structural insights. In the current work, we employ equilibrate-state free energy simulation to systematically study the folding/unfolding thermodynamics of a series of mutated peptides. Two AMBER force fields including AMBER99SB and AMBER14SB are compared. The new 14SB force field uses refitted torsion parameters compared with 99SB and they share the same atomic charge scheme. We find that in vacuo the helix formation is mutation dependent, which reflects the different helix propensities of different amino acids. In general, there are helix formers, helix indifferent groups and helix breakers. The helical structure becomes more favored when the length of the sequence becomes longer, which arises from the formation of additional backbone hydrogen bonds in the lengthened sequence. Therefore, the helix indifferent groups and helix breakers will become helix formers in long sequences. Also, protonation-dependent helix formation is observed for ionizable groups. In 14SB, the helical structures are more stable than in 99SB and differences can be observed in their grouping schemes, especially in the helix indifferent group. In solvents, all mutations are helix indifferent due to protein–solvent interactions. The decrease in the number of backbone hydrogen bonds is the same with the increase in the number of protein–water hydrogen bonds. The 14SB in explicit solvent is able to capture the free energy minima in the helical state while 14SB in implicit solvent, 99SB in explicit solvent and 99SB in implicit solvent cannot. The helix propensities calculated under 14SB agree with the corresponding experimental values, while the 99SB results obviously deviate from the references. Hence, implicit solvent models are unable to correctly describe the thermodynamics even for the simple helix formation in isolated peptides. Well-developed force fields and explicit solvents are needed to correctly describe the protein dynamics. Aside from the free energy, differences in conformational ensemble under different force fields in different solvent models are observed. The numbers of hydrogen bonds formed under different force fields agree and they are mostly determined by the solvent model.


2007 ◽  
Vol 39 (7) ◽  
pp. 1022-1026 ◽  
Author(s):  
T.E. Vittal Prasad ◽  
N. Venkanna ◽  
Y. Naveen Kumar ◽  
K. Ashok ◽  
N.M. Sirisha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document